International Journal of Scientific Research in Conputer Science and Engineering

ISSN No. 2320-7639

Volume-1, Issue-2, March-April-2013

D 0T Available online atwww.isroset.org

Metrics for Software Components in Object OrientedEnvironments: A Survey

Aanchaf®, Sonu kumd?f
“IDept. of Comp. Engineering, ACE, Ambala, Haryamaljid, aanchalprajapat@gmail.com
#Dept. of Comp. Engineering, ACE, Ambala, Haryamalja, sumit.damla@gmail.com

Abstract— Object-oriented Software Engineering, classicallyrefers to OOSE, is the object modeling methodologyn software
architectures. In this paper, we present obtainald and few Software metrics useful in the differenphase of the Object-Oriented
Software Development Life Cycle. Metrics have beeunsed progressively in making quantitative and quatative decisions as well as in
risk assessment and reduction. They give softwaregfessionals the ability to evaluate software proas. Metrics are used by the software
industry to enumerate the development, operation ahmaintenance of software. The practice of applyingoftware metrics to a software
process and to a software product is a complex taskat requires study and restraint, which brings krowledge of the status of the
process and / or product of software in regard tolte goals to accomplish. In this paper, metrics foDbject Oriented Software Systems
are presented. They provide a basis for measurindlaharacteristics.

Keywords- Object Oriented, Cohesion, Coupling

. INTRODUCTION

Object oriented (OO) approach is invented to rensnme of
flaws encountered in procedural approach. In alarggram it
is difficult to identify what data is used by whifinction as a
result if we need to modify data, then we also neechodify
all function that access that data. Also, it does model real
world problems very well. This is because functians action-
oriented and do not really corresponding to elemaitthe
problem. Five characteristics of Object OrientedtrMe are as
follows [5]:

» Localization operations used in many classes

» Encapsulation metrics for classes, not modules

» Information Hiding should be measured & improved
» Inheritance adds complexity, should be measured
» Object Abstraction metrics represent level of audion

Object oriented programming treats data as an itapbr
element and therefore does not allow it to flonelyearound

the system. It binds data more closely with thecfiom which

operate on them and hence able to protect them dicmidental
modification from other outside functions. Objectieated

program is viewed as collection of interacting olge objects
are instance of class. Each object is capableecéiving

messages, processing data, and sending messagatheto
objects.

II. COMPONENTSOF OBJECTORIENTATION
A. Data Abstraction:

a list of abstract attributes, called data memaed, functions,
called methods or member functions.[6]
B. Encapsulation:

Encapsulation is the word discover from the word
"CAPSULE" which mean to put something in a kindsbgll.
Binding of data and function into a single unitllea class, is
termed as encapsulation. By this data is not aitiiesby
outside function directly. Function inside a clasm access
that data and modify it.[6]

C. Inheritance:

It is the process through which object of one cleas
acquire the properties of objects of other clasainMoncept
in inheritance is that a derived class share common
characteristics with the class from which it is ided. It
provides the idea of reusability. That is a segnansource
code that can be used again to add new functi@shtith
slight or no modification to new derived class.[6]

D. Polymorphism:

It is a Greek term which means the ability to takare than
one form. It is of two types that are: operatioridvading and
function overloading. It means an operation canfgper
different operations at different instance of tiepending
upon on the type of data used. Polymorphism alloljgct
having different internal structure to share thensaexternal
interface.[6]

I1l. COUPLING AND COHESIONIN OBJECTORIENTED
ENVIRONMENTS

Coupling between modules / components is their degree of

It is an important property of OO through which themutual interdependence; lower coupling is bettérisl an

background or unessential details are hiding aryl essential
part is viewed. OO classes use this concept andefieed as

Corresponding Authomanchal™
© 2013, IJSRCSE All Rights Reserved

indication of the strength of interconnections betw program
units. Highly coupled have program units dependenieach
other. Loosely coupled are made up of units tha ar
independent or almost independent. Modules arepemtdent

25

ISROSET - International Journal of Scientific Research in Computer Science and Engineering, Volume-1, Issue-2, 2013

if they can function completely without the presera the
other. Obviously, we can't
independent of each other. They must interact abttrey can

associated with undesirable traits such as beifficudi to

have modules completelynaintain, difficult to test, difficult to reuse, @reven difficult to

understand. [2]

produce desired outputs. The more connections lestw
modules, the more dependent they are in the séaseriore
information about one module is required to undemdtthe
other module. Modules tightly coupled if they udeared
variables or if they swap control info. Loose conglif info
held within a unit and interface with other uniia parameter
lists. Tight coupling if shared global data. [2]

(s Case
Diagpares
ressed ! -
= N i
Stm:}ured mplemented
Analysis Design || Implementation
Madel Model Model Test Model

dinalysts
dagyams
Problam
dottugih chiject
disgpin
Interartion

specified Hagrams

Tse nase

diagrams

Figure 1: Object-Oriented Software Engineering

Cohesion of a single module/component is the defgreehich
its responsibilities form a meaningful unit; highayhesion is
better. It is a Measure of how well module fits etiger. A
component should implement a single logical functio single
logical entity. All the parts should contribute tthe
implementation. Modules with high cohesion tend lie
preferable because high cohesion is associated seitteral
desirable traits of software including robustnesdiability,
reusability, and understand-ability whereas low esitn is

© 2013, IJSRCSE All Rights Reserved

Y

Module1 T
p _ \
s \ N\ ,Q/ "““»\\ MULMCZ
c? R 4 T
— u\ ------- PR~ E)
(A % N\
/ B Jshe AV
AR U
T \ - G
NG [A\ (>\\<F '
~— L g
\ja,_ N
T T
SN DY
ey « Moduled
Mocule 3 h \
T o
<‘J >\ N/ /
\ ~ k i
— - h r —
(1} T
| Cohesion
\ _/
\ .
\-“H—-_.// _________ Conpling

Fig. 2: Coupling and cohesion

In above figure modules are interconnected via ogpand
component within the modules are interconnected wech
other via cohesion.

IV. REVIEW OF METRICSUSEDIN OBJECTORIENTED
ENVIRONMENTS

Various object oriented metrics are formed for tigect
oriented software development. Some of these nsediie CK
Metrics, MOOD Metrics, EMOOSE, LI Metrics

A. ShyamR. Chidamber and Chris F. Kemerer (CK) Metrics
[7]
Chidamber and Kemer¢€K) et al. [7]proposed metrics suite
that have generated a significant amount of inteaesl are
currently the most well known object-oriented suitd
measurements for Object-Oriented softwdree CK metrics
suite consists of six metrics that assess diffechatacteristics
of the object-oriented design are-

1) Weighted Methods per Class (WMC): This measures the
sum of complexity of the methods in a class. A ted of the
time and effort required to develop and maintagheas we can
use the number of methods and the complexity ofheac
method. A large number of methods in a class mase e
potentially larger impact on the children of a elasnce the
methods in the parent will be inherited by the @hilso, the
complexity of the class may be calculated by thelapatic
complexity of the methods. The high value of WM@iaates
that the class is more complex as compare to thevédues

2) Depth of Inheritance Tree (DIT): DIT metric is used to
find the length of the maximum path from the rootle to the

26

ISROSET - International Journal of Scientific Research in Computer Science and Engineering, Volume-1, Issue-2, 2013

end node of the tree. DIT represents the compleity the
behavior of a class, and the complexity of desiga dassand
potential reuse. Thus it can be hard to understarsystem
with many inheritance layers. On the other hantirge DIT
value indicates that many methods might be reu&eatkeper
class hierarchy indicates that the more methods wgasl or
inherited through which this making more complexptedict
the behavior of the class and the deeper treedtelichat there
is high complexity in the design because all of faets
contained more methods and class are involved. épde
hierarchy of the class may indicates a possihilftthe reusing
an inherited methods.

3) Number of children (NOC): Number of Children (NOC)
metric may be defined for the immediate sub classdinated
by the class in the form of class hierarchy [14]. Tthese
points are come out as NOC is used to measure"ittat/
many subclasses are going to inherit the methodseoparent
class”. Greater is the number of children, gretierpotential
for reuse, since inheritance is a form of reussoAdreater is
the number of children, the greater the likelihaddmproper
abstraction of the parent class. The number ofdadil also
gave an idea of the potential influence for thesshlwhich may
be design.

4) Coupling between Objects (CBO): CBO is used to count
the number of the class to which the specific classoupled.
The rich coupling decrease the modularity of tresslmaking
it less attractive for reusing the class and magh ltoupled
class is more sensitive to change in other pathefdesign
through which the maintenance is so much diffidaltthe
coupling of classes. The coupling Between Objecs§ds
(CBO) metric is defined as “CBO for a class is artoof the
number of non-inheritance related couples with sg#a% It
claimed that the unit of “class” used in this meis difficult
to justify, and suggested different forms of classipling:
inheritance, abstract data type and message paskiich are
available in object oriented programming.

5) Response for class (RFC): The response set of a class

(RFC) is defined as set of methods that can beutedcin

response and messages received a message by dut abj
that class. Larger value also complicated the rnigstnd

debugging of the object through which, it requittes tester to
have more knowledge of the functionality. The largdC

value takes more complex is class is a worst caseasio

value for RFC also helps the estimating the timeded for
time needed for testing the class.

6) Lack of Cohesion in Methods (LCOM): This metric is
used to count the number of disjoints methods pairsis the
number of similar method pairs used. The disjoirgthnds
have no common instance variables in the methobsde whe
similar methods have at least one common instaadabte. It
is used to measuring the pairs of methods withitaas using
the same instance variable. Since cohesivenesivetlslass
increases encapsulation it is desirable and du¢adk of

© 2013, IJSRCSE All Rights Reserved

cohesion may imply that the class is split in torenthan two
or more sub classes. Low cohesion in methods iser¢lae
complexity, when it increases the error pronenasing the
development is so increasing.

B. Metrics for Object-Oriented Design (MOOD):

F.B. Abreu et al. [3] defined MOOD (Metrics for @io}-
Oriented Design) metrics. MOOD refers a structural
mechanism of the object oriented paradigm like psakation

as (MHF, AHF), inheritance (MIF, AIF), polymorphism
(POF), and message passing (COF). In MOOD metrisein
there are two main features methods and attribétesbutes
are used to represent the status of object in ysterm and
methods are used to maintained or modifying seuénals of
status of the objects [5]. Metrics are defined as:

1) Method Hiding Factor (MHF): MHF is defined as the
ratio of the sum of the invisibilities of all metti® defined in
all classes to the total number of methods defindglde system
under consideration. The invisibility of a method the
percentage of the total classes from which thishogktis not
visible. Here inherited methods are not considered.

2) Attribute Hiding Factor (AHF): AHF is defined as the
ratio of the sum of the invisibilities of all attkites defined in
all classes to the total number of attributes definn the
system under consideration. (iii)Method Inheritari€actor
(MIF): MIF is defined as the ratio of the sum o&tmherited
methods in all classes of the system under coradidarto the
total number of available methods (locally defingtus
inherited) for all classes. It is used to measheeihheritance
of the class & also provide the similarity into ttlasses.

3) Attribute Inheritance Factor (AIF): AIF is defined as
the ratio of the sum of inherited attributes in@disses of the
system under consideration to the total numberwvailable
attributes (locally defined plus inherited) fdf classes. It is
used to measure the inheritance of the class &mizade the
similarity into the classes.

4) Polymorphism Factor (PF): PF is defined as the ratio of
the actual number of possible different polymorpéitiation
for class ¢ to the maximum number of possible distinct
polymorphic situations for class.®olymorphism potential of
the class are used to measure the polymorphismhén t
particular class & also arise from inheritance.

5) Coupling Factor (CF): CF is defined as the ratio of the
maximum possible number of couplings in the systenthe
actual number of couplings not imputable to intzerite. CF is
used to measure the coupling between the classesotipling
are of two types static & dynamic coupling, duewhbich is
increase the complexity of the class & reduce the
encapsulation & potential reuse that provide better
maintainability. Software developers for the objedented
system always avoid the high coupling factor.

27

ISROSET - International Journal of Scientific Research in Computer Science and Engineering, Volume-1, Issue-2, 2013

C. Extended Metricsfor Object-Oriented

Software Engineering Emoose: W. Li et al. [4] prepd
this metrics of the Moose model. They may be dbedrias

1) Message Pass Coupling (MPC): It means that the
number of message that can be sent by the clasatioms.

2) Data Abstraction Coupling (DAC): It is used to count
the number of classes which an aggregated to dwlass and
also defined the data abstraction coupling.

3) Number of Methods (NOM): It is used to count the
number of operations that are local to the classoinly those
class operation which can give the number of methtd
measure it.

4) Szel: Itis used to find the number of line of code.

attributes of a class. These two metrics affect dfi®rt
required to design, implement, test and maintailass.

4) Number of Descendent Classes (NDC): The Number of
Descendent Classes (NDC) metric as an alternatiwQcC is
defined as the total number of descendent classiéglfss) of
a class. The stated theoretical basis and viewpadidicate
that NOC metric measures the scope of influencthefclass
on its sub classes because of inheritance. Li edithat the
NDC metric captures the classes attribute better MOC.

5) Coupling through Abstract Data Type (CTA): The
Coupling through Abstract Data Type (CTA) is defires the
total number of classes that are used as abstasattgpes in
the data-attribute declaration of a class. Two sgasare

5) Sze2: It is used to count the number of local attributescoupled when one class uses the other class dsstrac data

& the number of operation defined in the class.

D. LI Metrics
Li et al. [6] proposed six metrics, these are:

1) Number of Ancestor Classes (NAC): The Number of
Ancestor classes (NAC) metric proposed as an altiem to
the DIT metric measures the total number of ancedtsses
from which a class inherits in the class inherigahgerarchy.
The theoretical basis and viewpoints both are sasne DIT
metric. In this the unit for the NAC metric is “sk’, justified
that because the attribute that the NAC metricwagtis the
number of other classes environments from which dlass
inherits.

2) Number of Local Methods (NLM): The Number of
Local Methods metric (NLM) is defined as the numbéthe
local methods defined in a class which are acclessibitside
the class. It measures the attributes of a clagsMMC metric
intends to capture. The theoretical basis and voéwp are
different from the WMC metric. The theoretical masi
describes the attribute of a class that the NLMrimeaptures.
This attribute is for the usage of the class irohject oriented
design because it indicates the size of a classal interface
through which other classes can use the class. Stetged
three viewpoints for NLM metric as following:

a) The NLM metric is directly linked to a programmer’s

type [16]. The theoretical view was that the CTAtmnecerelates
to the notion of class coupling through the usalwdtract data
types. This metric gives the scope of how many rothesses’
services a class needs in order to provide its samice to
others.

6) Coupling through Message Passing (CTM): The
Coupling through Message Passing (CTM) defined hes t
number of different messages sent out from a dassther
classes excluding the messages sent to the olgesated as
local objects in the local methods of the classoTlasses can
be coupled because one class sends a messageljeanof
another class, without involving the two classesoufgh
inheritance or abstract data type. Theoretical vigven was
that the CTM metric relates to the notion of messaassing in
object-oriented programming. The metric gives iaton of
how many methods of other classes are needed fith fluk
class own functionality.

V. DISADVANTAGES OFMETRICS

A. Disadvantages of CK Metrics

1) Weighted Methods per Class (WMC): WMC break an
elementary rule of measurement theory that a meashould
be concerned with a single attribute. This is al&d clear
whether the inherited method is to be counted isebeass
(which defines it), in derived classes or in both.

effort when a class is reused in an Object-Oriented 2) Response for a Class (RFC): Because of practical
design. More the local methods in a class, the Morgynsiderations, Chidamber and Kermerer recommerndéd

effort is required to comprehend the class behavior
The larger the local interface of a class, the neffert
is needed to design, implement, test, and mairtteen
class.

b)

one level of nesting during the collection of dafar
calculating RFC. This gives incomplete and ambiguou
approach as in real programming practice theraeXZeeply
nested call-backs” that are not considered here.

¢) The larger the local interface of a class, the more

influence the class has on its descendent classes.

3) Class Method Complexity (CMC): The Class Method
Complexity metric is defined as the summation & itfiternal
structural complexity of all local methods. The CNi@trics
theoretical basis and viewpoints are significandifferent

3) Depth of Inheritance Tree (DIT): But the definition
should measures the maximum ancestor classes fr®oeldss-
node to the root of the inheritance tree.

4) Number of children (NOC): The definition of NOC
metric gives the distorted view of the system aiints only

from WMC metric. The NLM and CMC metrics are the immediate sub-classes instead of all the delsoes of the

fundamentally different as they capture two indejsem

© 2013, IJSRCSE All Rights Reserved

28

ISROSET - International Journal of Scientific Research in Computer Science and Engineering, Volume-1, Issue-2, 2013

class. So the NOC value of a class should refldctha
subclasses that share the properties of that class.

5) Coupling between Object Classes (CBO): As Coupling
between Object classes increases, reusability aeeseand it
becomes harder to modify and test the softwaresysBut for
most authors coupling is reuse, which raises anitlyig®o
there is the need to find out the coupling levet implies the
goodness of design

6) Lack of Cohesion in Methods (LCOM): The high value
of LCOM indicates that the methods in the classratereally
related to each other and vice versa. Accordindefmition of
LCOM the high value of LCOM implies low similaritgnd
low cohesion, but a value of LCOM = 0 doesn't insplithe
reverse. So the definition of CK metric for LCOMrist able
to distinguish the more cohesive class from the teges. This
is simple violation of the basic axiom of measuratrtbeory,
which tells that a measure should be able to djstsh two
dissimilar entities. So this deficiency offends therpose of
metric.

B. Disadvantages of MOOD Metrics

1) Method Inheritance Factor: Definition of the MIF is
inconsistent with the 0-1 scale.

2) Attribute Inheritance factor: The metric Ai (Ci) is
meaningless in the sense that the concept of theritance
concerns the behavior defined in a method, anbatti does
not have behavior, and thus cannot be overriddémherited.

3) Method Hiding Factor: It is recommended that MHF
should not be lower than a particular (as yet unee) value
but suggest that there is no upper limit, thus yimgl that it is
‘good’ for all methods in a class to be hidden \(ate).
However, the number of private methods in a classd't tell
us anything about the degree of information hidimg class.
It may tell us that a particular method (or methodas been
broken down into a number of smaller methods toicavo
duplication or for clarity of understanding. Suchethrods
would only need to be visible to the containingsslaBut

whether or not a method is broken down this way the

containing class’s implementation is still hidden.

4) Attribute Hiding Factor: This is a clearly defined metric
with no apparent inconsistencies. Its use is iemening the
level of visibility of a class’s data.

5) Polymorphism factor: It is possible a sub-system will
consist of a set of classes that extends a framewdbis may
be a set of library classes or a framework of layv(evel
system classes. When measuring the sub-systenouldshe
only the classes that belong to the sub-system #rat
measured; classes outside of its boundaries (wdniehwhere
the framework or library classes will lie) shouldbtnbe
considered. In such cases the denominator for tG& P
measure may be less than the numerator, resultirgvialue
greater than one

© 2013, IJSRCSE All Rights Reserved

6) Coupling Factor: This metric is intended to count all
client-supplier relationships in a system. The ing@at point
here is that the relationship between any two ekss a
system is not constrained to just one or the otifethese
relationship types.

VI. CONCLUSIONS

In this paper, we have presented all of the softwaetrics for
object oriented development. They provided a bdsis
measuring all of the characteristics like size, plaxity,

performance and quality. In rely of some notions tuality
may be increased by added some features like abistra
polymorphism and inheritance which are inherentobject
orientation. This paper provides some help foraedeers and
practitioners for better understanding and selaabiosoftware
metrics for their purposes.

REFERENCES

Amandeep Kaur, Satwinder Singh, Dr. K. S. Kahlod am.
Parvinder S. Sandhu “Empirical Analysis of CK & MDO
Metric ~ Suit”, International Journal of Innovation,
Management and Technology, Vol. 1, No. 5, Decer2béo,
pp. 447-452

Adam Carlson “Coupling and
http://www.cs.washington.edu/education/courses/
cse403/96sp/coupling-cohesion.html”

B. F. Abreu: “Design metrics for OO software system
ECOOP’95, Quantitative Methods Workshop, 1995.

W. Li, Sallie, Henry “Metrics for Object-Orientedystem”,
Transactions on Software Engineering, 1995.

Seyyed Mohsen Jamali “Object Oriented Metrics (AvBy
Approach)” January 2006

Li W., “Another Metric Suite for Object-oriented
Programming”, The Journal of System and Softward, ¥4,
Issue 2, December 1998, pp. 155-162.

Shyam R. Chidamber and Chris F. Kemerer "A Met8agte
for Object Oriented Design” IEEE Transactions orit\Bare
Engineering, Vol. 20, No. 6, June 1994, pp. 476:493

E. Balagurusamy. “Object-Orinted Programming With+C
Second Edition ,2004

(1]

[2] Cohesion

(6]

(7]

(8]

29

