
© 2013, IJSRCSE All Rights Reserved 25

International Journal of Scientific Research in Computer Science and Engineering

 Review Paper

Volume-1, Issue-2, March-April-2013

Available online at www.isroset.org

Metrics for Software Components in Object Oriented Environments: A Survey

Aanchal#1, Sonu kumar#2
#1Dept. of Comp. Engineering, ACE, Ambala, Haryana, India, aanchalprajapat@gmail.com

#2Dept. of Comp. Engineering, ACE, Ambala, Haryana, India, sumit.damla@gmail.com

Abstract— Object-oriented Software Engineering, classically refers to OOSE, is the object modeling methodology in software
architectures. In this paper, we present obtainable and few Software metrics useful in the different phase of the Object-Oriented
Software Development Life Cycle. Metrics have been used progressively in making quantitative and qualitative decisions as well as in
risk assessment and reduction. They give software professionals the ability to evaluate software process. Metrics are used by the software
industry to enumerate the development, operation and maintenance of software. The practice of applying software metrics to a software
process and to a software product is a complex task that requires study and restraint, which brings knowledge of the status of the
process and / or product of software in regard to the goals to accomplish. In this paper, metrics for Object Oriented Software Systems
are presented. They provide a basis for measuring all characteristics.

Keywords- Object Oriented, Cohesion, Coupling

I. INTRODUCTION

Object oriented (OO) approach is invented to remove some of
flaws encountered in procedural approach. In a large program it
is difficult to identify what data is used by which function as a
result if we need to modify data, then we also need to modify
all function that access that data. Also, it does not model real
world problems very well. This is because functions are action-
oriented and do not really corresponding to elements of the
problem. Five characteristics of Object Oriented Metrics are as
follows [5]:
� Localization operations used in many classes

� Encapsulation metrics for classes, not modules

� Information Hiding should be measured & improved

� Inheritance adds complexity, should be measured

� Object Abstraction metrics represent level of abstraction

Object oriented programming treats data as an important
element and therefore does not allow it to flow freely around
the system. It binds data more closely with the function which
operate on them and hence able to protect them from accidental
modification from other outside functions. Object oriented
program is viewed as collection of interacting objects, objects
are instance of class. Each object is capable of receiving
messages, processing data, and sending messages to other
objects.

II. COMPONENTS OF OBJECT ORIENTATION

A. Data Abstraction:

It is an important property of OO through which the
background or unessential details are hiding and only essential
part is viewed. OO classes use this concept and are defined as

a list of abstract attributes, called data member, and functions,
called methods or member functions.[6]
B. Encapsulation:

Encapsulation is the word discover from the word
"CAPSULE" which mean to put something in a kind of shell.
Binding of data and function into a single unit, called class, is
termed as encapsulation. By this data is not accessible by
outside function directly. Function inside a class can access
that data and modify it.[6]

C. Inheritance:

It is the process through which object of one class can
acquire the properties of objects of other class. Main concept
in inheritance is that a derived class share common
characteristics with the class from which it is derived. It
provides the idea of reusability. That is a segment of source
code that can be used again to add new functionalities with
slight or no modification to new derived class.[6]

D. Polymorphism:

 It is a Greek term which means the ability to take more than
one form. It is of two types that are: operation overloading and
function overloading. It means an operation can perform
different operations at different instance of time depending
upon on the type of data used. Polymorphism allows object
having different internal structure to share the same external
interface.[6]

III. COUPLING AND COHESION IN OBJECT ORIENTED

ENVIRONMENTS

Coupling between modules / components is their degree of
mutual interdependence; lower coupling is better. It is an
indication of the strength of interconnections between program
units. Highly coupled have program units dependent on each
other. Loosely coupled are made up of units that are
independent or almost independent. Modules are independent Corresponding Author: Aanchal#1

ISSN No. 2320-7639

ISROSET - International Journal of Scientific Research in Computer Science and Engineering, Volume-1, Issue-2, 2013

© 2013, IJSRCSE All Rights Reserved 26

if they can function completely without the presence of the
other. Obviously, we can't have modules completely
independent of each other. They must interact so that they can
produce desired outputs. The more connections between
modules, the more dependent they are in the sense that more
information about one module is required to understand the
other module. Modules tightly coupled if they use shared
variables or if they swap control info. Loose coupling if info
held within a unit and interface with other units via parameter
lists. Tight coupling if shared global data. [2]

Figure 1 : Object-Oriented Software Engineering

Cohesion of a single module/component is the degree to which
its responsibilities form a meaningful unit; higher cohesion is
better. It is a Measure of how well module fits together. A
component should implement a single logical function or single
logical entity. All the parts should contribute to the
implementation. Modules with high cohesion tend to be
preferable because high cohesion is associated with several
desirable traits of software including robustness, reliability,
reusability, and understand-ability whereas low cohesion is

associated with undesirable traits such as being difficult to
maintain, difficult to test, difficult to reuse, and even difficult to
understand. [2]

Fig. 2: Coupling and cohesion

In above figure modules are interconnected via coupling and
component within the modules are interconnected with each
other via cohesion.

IV. REVIEW OF METRICS USEDIN OBJECTORIENTED

ENVIRONMENTS

Various object oriented metrics are formed for the object
oriented software development. Some of these metrics are CK
Metrics, MOOD Metrics, EMOOSE, LI Metrics

A. Shyam R. Chidamber and Chris F. Kemerer (CK) Metrics
[7]

Chidamber and Kemerer (CK) et al. [7] proposed metrics suite
that have generated a significant amount of interest and are
currently the most well known object-oriented suite of
measurements for Object-Oriented software. The CK metrics
suite consists of six metrics that assess different characteristics
of the object-oriented design are-

1) Weighted Methods per Class (WMC): This measures the

sum of complexity of the methods in a class. A predictor of the
time and effort required to develop and maintain a class we can
use the number of methods and the complexity of each
method. A large number of methods in a class may have a
potentially larger impact on the children of a class since the
methods in the parent will be inherited by the child. Also, the
complexity of the class may be calculated by the cyclomatic
complexity of the methods. The high value of WMC indicates
that the class is more complex as compare to the low values.

2) Depth of Inheritance Tree (DIT): DIT metric is used to
find the length of the maximum path from the root node to the

ISROSET - International Journal of Scientific Research in Computer Science and Engineering, Volume-1, Issue-2, 2013

© 2013, IJSRCSE All Rights Reserved 27

end node of the tree. DIT represents the complexity and the
behavior of a class, and the complexity of design of a class and
potential reuse. Thus it can be hard to understand a system
with many inheritance layers. On the other hand, a large DIT
value indicates that many methods might be reused. A deeper
class hierarchy indicates that the more methods was used or
inherited through which this making more complex to predict
the behavior of the class and the deeper tree indicates that there
is high complexity in the design because all of the facts
contained more methods and class are involved. A deep
hierarchy of the class may indicates a possibility of the reusing
an inherited methods.

3) Number of children (NOC): Number of Children (NOC)

metric may be defined for the immediate sub class coordinated
by the class in the form of class hierarchy [14, 15]. These
points are come out as NOC is used to measure that “How
many subclasses are going to inherit the methods of the parent
class”. Greater is the number of children, greater the potential
for reuse, since inheritance is a form of reuse. Also greater is
the number of children, the greater the likelihood of improper
abstraction of the parent class. The number of children also
gave an idea of the potential influence for the class which may
be design.

4) Coupling between Objects (CBO): CBO is used to count

the number of the class to which the specific class is coupled.
The rich coupling decrease the modularity of the class making
it less attractive for reusing the class and more high coupled
class is more sensitive to change in other part of the design
through which the maintenance is so much difficult in the
coupling of classes. The coupling Between Object Classes
(CBO) metric is defined as “CBO for a class is a count of the
number of non-inheritance related couples with classes”. It
claimed that the unit of “class” used in this metric is difficult
to justify, and suggested different forms of class coupling:
inheritance, abstract data type and message passing which are
available in object oriented programming.

5) Response for class (RFC): The response set of a class

(RFC) is defined as set of methods that can be executed in
response and messages received a message by the object of
that class. Larger value also complicated the testing and
debugging of the object through which, it requires the tester to
have more knowledge of the functionality. The larger RFC
value takes more complex is class is a worst case scenario
value for RFC also helps the estimating the time needed for
time needed for testing the class.

6) Lack of Cohesion in Methods (LCOM): This metric is

used to count the number of disjoints methods pairs minus the
number of similar method pairs used. The disjoint methods
have no common instance variables in the methods, while the
similar methods have at least one common instance variable. It
is used to measuring the pairs of methods within a class using
the same instance variable. Since cohesiveness within a class
increases encapsulation it is desirable and due to lack of

cohesion may imply that the class is split in to more than two
or more sub classes. Low cohesion in methods increase the
complexity, when it increases the error proneness during the
development is so increasing.

B. Metrics for Object-Oriented Design (MOOD):

F.B. Abreu et al. [3] defined MOOD (Metrics for Object-
Oriented Design) metrics. MOOD refers a structural
mechanism of the object oriented paradigm like encapsulation
as (MHF, AHF), inheritance (MIF, AIF), polymorphism
(POF), and message passing (COF). In MOOD metrics model,
there are two main features methods and attributes. Attributes
are used to represent the status of object in the system and
methods are used to maintained or modifying several kinds of
status of the objects [5]. Metrics are defined as:

1) Method Hiding Factor (MHF): MHF is defined as the

ratio of the sum of the invisibilities of all methods defined in
all classes to the total number of methods defined in the system
under consideration. The invisibility of a method is the
percentage of the total classes from which this method is not
visible. Here inherited methods are not considered.

2) Attribute Hiding Factor (AHF): AHF is defined as the

ratio of the sum of the invisibilities of all attributes defined in
all classes to the total number of attributes defined in the
system under consideration. (iii)Method Inheritance Factor
(MIF): MIF is defined as the ratio of the sum of the inherited
methods in all classes of the system under consideration to the
total number of available methods (locally defined plus
inherited) for all classes. It is used to measure the inheritance
of the class & also provide the similarity into the classes.

3) Attribute Inheritance Factor (AIF): AIF is defined as

the ratio of the sum of inherited attributes in all classes of the
system under consideration to the total number of available
attributes (locally defined plus inherited) for all classes. It is
used to measure the inheritance of the class & also provide the
similarity into the classes.

4) Polymorphism Factor (PF): PF is defined as the ratio of

the actual number of possible different polymorphic situation
for class Ci to the maximum number of possible distinct
polymorphic situations for class Ci. Polymorphism potential of
the class are used to measure the polymorphism in the
particular class & also arise from inheritance.

5) Coupling Factor (CF): CF is defined as the ratio of the

maximum possible number of couplings in the system to the
actual number of couplings not imputable to inheritance. CF is
used to measure the coupling between the classes. the coupling
are of two types static & dynamic coupling, due to which is
increase the complexity of the class & reduce the
encapsulation & potential reuse that provide better
maintainability. Software developers for the object-oriented
system always avoid the high coupling factor.

ISROSET - International Journal of Scientific Research in Computer Science and Engineering, Volume-1, Issue-2, 2013

© 2013, IJSRCSE All Rights Reserved 28

C. Extended Metrics for Object-Oriented

Software Engineering Emoose: W. Li et al. [4] proposed
this metrics of the Moose model. They may be described as

1) Message Pass Coupling (MPC): It means that the
number of message that can be sent by the class operations.

2) Data Abstraction Coupling (DAC): It is used to count
the number of classes which an aggregated to current class and
also defined the data abstraction coupling.

3) Number of Methods (NOM): It is used to count the

number of operations that are local to the class i.e. only those
class operation which can give the number of methods to
measure it.

4) Size1: It is used to find the number of line of code.
5) Size2: It is used to count the number of local attributes

& the number of operation defined in the class.

D. LI Metrics

Li et al. [6] proposed six metrics, these are:

1) Number of Ancestor Classes (NAC): The Number of
Ancestor classes (NAC) metric proposed as an alternative to
the DIT metric measures the total number of ancestor classes
from which a class inherits in the class inheritance hierarchy.
The theoretical basis and viewpoints both are same as the DIT
metric. In this the unit for the NAC metric is “class”, justified
that because the attribute that the NAC metric captures is the
number of other classes environments from which the class
inherits.

2) Number of Local Methods (NLM): The Number of

Local Methods metric (NLM) is defined as the number of the
local methods defined in a class which are accessible outside
the class. It measures the attributes of a class that WMC metric
intends to capture. The theoretical basis and viewpoints are
different from the WMC metric. The theoretical basis
describes the attribute of a class that the NLM metric captures.
This attribute is for the usage of the class in an object oriented
design because it indicates the size of a class’s local interface
through which other classes can use the class. They stated
three viewpoints for NLM metric as following:

a) The NLM metric is directly linked to a programmer’s
effort when a class is reused in an Object-Oriented
design. More the local methods in a class, the more
effort is required to comprehend the class behavior.

b) The larger the local interface of a class, the more effort
is needed to design, implement, test, and maintain the
class.

c) The larger the local interface of a class, the more
influence the class has on its descendent classes.

3) Class Method Complexity (CMC): The Class Method
Complexity metric is defined as the summation of the internal
structural complexity of all local methods. The CMC metrics
theoretical basis and viewpoints are significantly different
from WMC metric. The NLM and CMC metrics are
fundamentally different as they capture two independent

attributes of a class. These two metrics affect the effort
required to design, implement, test and maintain a class.

4) Number of Descendent Classes (NDC): The Number of

Descendent Classes (NDC) metric as an alternative to NOC is
defined as the total number of descendent classes (subclass) of
a class. The stated theoretical basis and viewpoints indicate
that NOC metric measures the scope of influence of the class
on its sub classes because of inheritance. Li claimed that the
NDC metric captures the classes attribute better than NOC.

5) Coupling through Abstract Data Type (CTA): The

Coupling through Abstract Data Type (CTA) is defined as the
total number of classes that are used as abstract data types in
the data-attribute declaration of a class. Two classes are
coupled when one class uses the other class as an abstract data
type [16]. The theoretical view was that the CTA metric relates
to the notion of class coupling through the use of abstract data
types. This metric gives the scope of how many other classes’
services a class needs in order to provide its own service to
others.

6) Coupling through Message Passing (CTM): The
Coupling through Message Passing (CTM) defined as the
number of different messages sent out from a class to other
classes excluding the messages sent to the objects created as
local objects in the local methods of the class. Two classes can
be coupled because one class sends a message to an object of
another class, without involving the two classes through
inheritance or abstract data type. Theoretical view given was
that the CTM metric relates to the notion of message passing in
object-oriented programming. The metric gives indication of
how many methods of other classes are needed to fulfill the
class own functionality.

V. DISADVANTAGES OF METRICS

A. Disadvantages of CK Metrics

1) Weighted Methods per Class (WMC): WMC break an
elementary rule of measurement theory that a measure should
be concerned with a single attribute. This is also not clear
whether the inherited method is to be counted in base class
(which defines it), in derived classes or in both.

2) Response for a Class (RFC): Because of practical

considerations, Chidamber and Kermerer recommended only
one level of nesting during the collection of data for
calculating RFC. This gives incomplete and ambiguous
approach as in real programming practice there exists “Deeply
nested call-backs” that are not considered here.

3) Depth of Inheritance Tree (DIT): But the definition

should measures the maximum ancestor classes from the class-
node to the root of the inheritance tree.

4) Number of children (NOC): The definition of NOC
metric gives the distorted view of the system as it counts only
the immediate sub-classes instead of all the descendants of the

ISROSET - International Journal of Scientific Research in Computer Science and Engineering, Volume-1, Issue-2, 2013

© 2013, IJSRCSE All Rights Reserved 29

class. So the NOC value of a class should reflect all the
subclasses that share the properties of that class.

5) Coupling between Object Classes (CBO): As Coupling
between Object classes increases, reusability decreases and it
becomes harder to modify and test the software system. But for
most authors coupling is reuse, which raises ambiguity. So
there is the need to find out the coupling level that implies the
goodness of design
 6) Lack of Cohesion in Methods (LCOM): The high value
of LCOM indicates that the methods in the class are not really
related to each other and vice versa. According to definition of
LCOM the high value of LCOM implies low similarity and
low cohesion, but a value of LCOM = 0 doesn’t implies the
reverse. So the definition of CK metric for LCOM is not able
to distinguish the more cohesive class from the less ones. This
is simple violation of the basic axiom of measurement theory,
which tells that a measure should be able to distinguish two
dissimilar entities. So this deficiency offends the purpose of
metric.

B. Disadvantages of MOOD Metrics

1) Method Inheritance Factor: Definition of the MIF is
inconsistent with the 0-1 scale.

2) Attribute Inheritance factor: The metric Ai (Ci) is

meaningless in the sense that the concept of the inheritance
concerns the behavior defined in a method, an attribute does
not have behavior, and thus cannot be overridden or inherited.

3) Method Hiding Factor: It is recommended that MHF

should not be lower than a particular (as yet undefined) value
but suggest that there is no upper limit, thus implying that it is
‘good’ for all methods in a class to be hidden (private).
However, the number of private methods in a class doesn’t tell
us anything about the degree of information hiding in a class.
It may tell us that a particular method (or methods) has been
broken down into a number of smaller methods to avoid
duplication or for clarity of understanding. Such methods
would only need to be visible to the containing class. But
whether or not a method is broken down this way the
containing class’s implementation is still hidden.

4) Attribute Hiding Factor: This is a clearly defined metric

with no apparent inconsistencies. Its use is in determining the
level of visibility of a class’s data.

5) Polymorphism factor: It is possible a sub-system will

consist of a set of classes that extends a framework. This may
be a set of library classes or a framework of low(er) level
system classes. When measuring the sub-system it should be
only the classes that belong to the sub-system that are
measured; classes outside of its boundaries (which are where
the framework or library classes will lie) should not be
considered. In such cases the denominator for the POF
measure may be less than the numerator, resulting in a value
greater than one

6) Coupling Factor: This metric is intended to count all
client-supplier relationships in a system. The important point
here is that the relationship between any two classes in a
system is not constrained to just one or the other of these
relationship types.

VI. CONCLUSIONS

In this paper, we have presented all of the software metrics for
object oriented development. They provided a basis for
measuring all of the characteristics like size, complexity,
performance and quality. In rely of some notions the quality
may be increased by added some features like abstraction,
polymorphism and inheritance which are inherent in object
orientation. This paper provides some help for researchers and
practitioners for better understanding and selection of software
metrics for their purposes.

REFERENCES:

[1] Amandeep Kaur, Satwinder Singh, Dr. K. S. Kahlon and Dr.
Parvinder S. Sandhu “Empirical Analysis of CK & MOOD
Metric Suit”, International Journal of Innovation,
Management and Technology, Vol. 1, No. 5, December 2010,
pp. 447-452

[2] Adam Carlson “Coupling and Cohesion
http://www.cs.washington.edu/education/courses/
cse403/96sp/coupling-cohesion.html”

[3] B. F. Abreu: “Design metrics for OO software system”,
ECOOP’95, Quantitative Methods Workshop, 1995.

[4] W. Li, Sallie, Henry “Metrics for Object-Oriented system”,
Transactions on Software Engineering, 1995.

[5] Seyyed Mohsen Jamali “Object Oriented Metrics (A Survey
Approach)” January 2006

[6] Li W., “Another Metric Suite for Object-oriented
Programming”, The Journal of System and Software, Vol. 44,
Issue 2, December 1998, pp. 155-162.

[7] Shyam R. Chidamber and Chris F. Kemerer ”A Metrics Suite
for Object Oriented Design” IEEE Transactions on Software
Engineering, Vol. 20, No. 6, June 1994, pp. 476-493.

[8] E. Balagurusamy. “Object-Orinted Programming With C++”
Second Edition ,2004

