

© 2022, IJSRCSE All Rights Reserved 47

International Journal of Scientific Research in ____________________________ Research Paper.
Computer Science and Engineering

Vol.10, Issue.3, pp.47-51, June (2022) E-ISSN: 2320-7639

Controllers Performance Analysis in Software-Defined Networking

Ayman Haggag

1*
, Sanaa Awad

2
, Ali Saad Gaballah

3

1
Department of Electronics and Communications Engineering, Faculty of Engineering, Helwan University, Cairo, Egypt

2
Deptartment of Curricula and Teaching Methods, Faculty of Education, Banha University, Banha, Egypt

*Corresponding Author: haggag@techedu.helwan.edu.eg, Tel.: +20-1011101699

 Available online at: www.isroset.org

Received: 28/Apr/2022, Accepted: 30/May/2022, Online: 30/Jun/2022

Abstract—Software-Defined Networks (SDN) is a modern networking model characterized by many features by which the

network can be configured more easily and managed at lower cost and higher efficiency to cope with the requirements of

the current era of technology, which requires much more network automation and flexibility than traditional networks. The

technical aspect is a new approach to network management, whereby the network administrator can manage the network in

an abstract way away from knowing the technical details in the lower layers. OpenFlow protocol is the protocol used in

SDN managements. Several SDN controllers that support OpenFlow now exist. In this research, we compare the features

provided by the most popular SDN controllers available now. We apply existing benchmarking and network analysis tools

to assess the performance SDN controllers for different network sizes using available SDN emulators such as Mininet.

Keywords— Software-Defined Networking; SDN Controllers; OpenFlow protocol

I. INTRODUCTION

SDNs are a programmable network architecture that

enables programmatic and dynamic network control. It is

controlled centrally by the so-called network controller

(SDN controller) [1]. Therefore, it is based mainly on the

separation between the two main pillars of the network:

control and command execution. Accordingly, the SDN

has three main features: The first is the separation of the

execution level from the control plane. The second feature:

centralized control of the devices within the network. The

third feature: the programming of the central controllers.

That is, we have within these networks, as in Figure 1, a

part responsible for decision-making and device

management, and it is the mastermind of the network

(special controllers). Devices that respond only to the

commands of the controllers, and can be likened to

muscles and are called the physical force of the network

such as switches and routers [2].

Figure 1. Architecture of Traditional Networks and Software-

Defined Networks

The structure of SDNs has been divided into three layers

shown in Figure 2, and the following is an explanation of

each layer separately [3].

Figure 2. SDN Architecture

A. Application Layer

It is the first layer in the SDN architecture, and it consists

of the services and applications that you provide to the

user, and this layer communicates with the next layer

through the Northbound API (Northbound Application

Programming Interface). The application layer consists of

the services and applications provided by the network to

the user. Implementation of service Example: Routing

filter ACL and QoS. This layer communicates with that of

the control layer via API.

B. Control Layer

It is the second layer in the architecture, and this layer

consists of central controllers separated from the network

infrastructure; Which performs the function of controlling,

managing and giving commands to network devices, all of

http://www.isroset.org/

 Int. J. Sci. Res. in Computer Science and Engineering Vol.10, Issue.3, Jun 2022

© 2022, IJSRCSE All Rights Reserved 48

them are routers and switches, which include the authority

to pass data only. It is worth noting that the control layer

communicates with the next layer - the infrastructure layer

- through the Southbound API (Southbound Application

Programming Interface), and this layer uses the Open Flow

protocol to communicate with network devices.

C. Data Layer

It is the third and final layer within the SDN architecture,

and it consists of virtual and physical network devices such

as switches or routers. Devices in this layer receive and

execute commands from Layer 2. Devices of this layer

must support the Open Flow protocol [4].

D. Northbound Application Programming Interface

A software interface that allows the application layer on

top of the SDN architecture to take an overview of the

network and manage the operation of the controllers and

the network as a whole.

E. Southbound Application Programming Interface

Bridges between the control layer elements and the routing

elements in the infrastructure, OpenFlow is the Southern

SDN API (3). Figure 3 shows a schematic diagram of SDN

application programming interfaces.

Figure 3. SDN Application Programming Interface

F. OpenFlow Protocol

The separation between the control and implementation

layers (the infrastructure layer) necessitated the existence

of a protocol that regulates the communication between the

two layers, so the OpenFlow protocol was agreed upon; It

is the mainstay in SDNs, and its main function is to

determine the path of packets based on predefined rules by

the network engineer. In addition, the protocol defines the

appropriate function, i.e. the switch passes the data packet

or discards it (1). Figure 4 shows a schematic diagram of

OpenFlow protocol [5].

Figure 4. OpenFlow Protocol

This protocol consists of a series of messages sent from the

controller to the switch, as well as a series of messages

sent in the opposite direction. Those messages give the

controller precise control of switching user traffic. A

stream as a series of packets transmitted from one network

endpoint (or set of endpoints) to another. A single set of

rules defines the forwarding actions a device must take for

all packets in a given flow. When the console creates a

flow, the controller tells the switch how to handle

incoming packets.

G. SDN Controller

The controller provides a northbound API for applications,

maintains a view of the entire network, executes policy

choices, controls all SDN devices that make up the

network architecture, and provides a view of the entire

network. When we indicated that the controller makes

policy decisions about routing, forwarding, redirecting,

load balancing, and the like, we meant the controller as

well as the applications that use it. We meant the controller

as well as the applications that use it when we said the

controller makes policy judgments about routing,

forwarding, redirecting, load balancing, and the like. Keep

your attention solely on the controller. The rest of the

devices in the SDN network are stripped of their control

functions. They are only used to transfer the services and

applications using the OpenFlow Protocol as a common

language between them [6].

The rest of this paper is organized as follows, Section I

contains an introduction to Software Defined Networking,

Section II contain the related work to SDN controller

evaluation, Section III describes our proposed evaluation

methodology, Section IV describes our results and

discussions, Section V concludes our research work with

proposed future research directions.

II. RELATED WORK

Since the introduction of the concept of Software Defined

Networking, several studies and researches were directed

 Int. J. Sci. Res. in Computer Science and Engineering Vol.10, Issue.3, Jun 2022

© 2022, IJSRCSE All Rights Reserved 49

to analysis and evaluate this new emerging paradigm.

Many OpenFlow controllers have been developed and

released for research and commercial use. Earlier studies

on SDN controllers only focused on propagation delays

and ignored the traffic load balancing. Heller et al. [7] tried

to solve problems of how to minimize the average and

maximum controller–switch latency. The packet

processing latency in the controllers is typically longer

than the propagation transmission latency. However, in

real networks, the round-trip propagation latency is quite

significant. The author in [8] provided network

optimization for improved performance and speed and in

[9] provided security overview of software defined

networks: threats and countermeasures. The author [10] in

provided benchmarking and performance analysis of

Software Defined Networking controllers in normal and

failsafe operations using multiple redundant controllers.

Authors in [11] provided security analysis of Software

Defined Networking without much consideration of

network performance.

The main contribution of our research is to provide a

comparative study of features of various SDN controllers

that support OpenFlow and to assess the performance of

the Ryu controller in terms of latency and throughput for

various SDN network sizes.

III. PROPOSED EVALUATION METHODOLOGY

Several tools are needed to build SDN networks and to test

and compare the performance of various controllers. Table

1 shows examples and explanation of various programs

that may be used to simulate or measure the performance

SDN networks.

Table 1. SDN simulation and evaluation tools

No. Product

Name

Description

1 Cbench A special tool for measuring the efficiency of

the OpenFlow Controller, by creating a variety

of switch devices that send a packet in

message to the controller, and then note the

received reply and, accordingly, measure the

performance of the controller efficiency [12].

2 Oflops A tool that plays the opposite role, the Cbench

tool, which is to measure the efficiency of the

OpenFlow Switch, by creating a vitual

controller that sends messages to the switch

and then notes the reply and accordingly

measures the performance and efficiency of

the switch device [13].

3 Mininet The famous Mennet program, which is an

emulator designed to create large-sized

networks from switch and hosts devices, in

addition to its support for SDN technology, is

widely spread among researchers to simulate

Openflow switches and controllers and

establish a connection between them [14].

4 Oftest A tool used in testing a range of OpenFlow

parameters in switch devices that support up

to version 1.2 of OpenFlow [15].

There are many controllers, some are open source and

some depend on the vendor. They also differ according to

the programming languages in which the network is

controlled. The most famous among them are: Pox, Nox,

Floodlight and Open Daylight; and Ryu

A. SDN measuring tool

Wireshark can be used to see all data sent between

Controller and Switch. This will help to identify faults in

the communication between the control plane and the data

plane. The nature of this data is in the form of messaging

requests from the switch to consult the controller for a

particular packet, or the controller's response to a switch

request, all done through the previously mentioned

protocol, openFlow. To capture this data, it is sufficient to

run Wireshark version above 1.12.

B. SDN simulation tool

Mininet can be used to emulate SDN networks by building

virtual network devices. Mininet creates a virtual SDN

network, running a real kernel, switch, and application

code, on a single virtual machine. Figure 5 shows a single,

linear, and tree topologies created in Mininet.

(a) Single topology (b) Linear topology

(c) Tree topology

Figure 5. Topologies in Mininet

C. Ryu controller

The Ryu controller is an open source controller and its

code is written in Python and is available under the Apache

2.0 license. The Ryu Controller has three layers,

application layer, control layer, and infrastructure layer as

shown in Figure 6. The Ryu controller communicates with

forwarding plane switches and routers using the OpenFlow

protocol. The Ryu controller is tested and certified to work

with several OpenFlow switches.

 Int. J. Sci. Res. in Computer Science and Engineering Vol.10, Issue.3, Jun 2022

© 2022, IJSRCSE All Rights Reserved 50

Figure 6. The architecture of the RYU Controller

IV. RESULTS AND DISCUSSION

The performance of five notable SDN controllers, Pox,

Nox, Floodlight and Open Daylight; and Ryu, are

compared. Comparison is based on open flow supported

versions, supported platforms, programming language and

open source. The results of this comparison is shown in

Table 2.

Table 2. Comparison between SDN controllers

Controller

Name

OpenFlow

Supported

Platform

Support

Prog.

Lang.

Open

Source

Pox V1.0
Linux Mac

Windows
Python Yes

Nox V1.0
Linux Mac

Windows
C++ Yes

FloodLight V1.0 Linux Java Yes

Open

Daylight
V1.0

Linux Mac

windows
Java Yes

Ryu

V1.0

V1.2

V1.3

Linux Python Yes

A. Overall SDN performance analysis

We use Mininet simulator to evaluate the overall

performance of the SDN. We use Miniedit to build the

network topology, and WireShark to analyze OpenFlow

messages.

B. Ryu controller assessment

To evaluate the performance of the Ryu controller, Mininet

installed over Ubuntu provides an emulation environment

for rapid topology construction using the graphical user

interface Miniedit. Two terminals are opened, one for the

Mininet and another for the Ryu, for creating network

topology and installing the Ryu controller. A topology

created for our evaluation is shown in Figure 7. We

evaluate the Ryu controller performance at different

number of switches and hosts in the network.

Figure 7. SDN topology created using Miniedit

We use the Cbench tool to measure the performance of the

Ryu console in terms of throughput and latency by

delivering messages to the console using the OpenFlow

protocol.

We use the Cbench program to assess the latency of the

Ryu controller performing the test with 5, 10, 15, 20, 25,

and 30 switches. The average latency is shown in Figure 8.

Figure 8. Latency for Ryu Controller

We also use the Cbench program with oflops to assess the

throughput of the Ryu controller performing the test with

5, 10, 15, 20, 25, and 30 switches. The throughput is

shown in Figure 9.

Figure 9. Throughtput for Ryu Controller

After analyzing the obtained results, we can notice from

Figure 8 a big increase in latency from 0.2 ms to 2.5 ms as

the number of switches change from 5 to 10, however, the

increase in latency becomes almost linear with a slow

increase rate as the number of switches increase to 15, 20,

 Int. J. Sci. Res. in Computer Science and Engineering Vol.10, Issue.3, Jun 2022

© 2022, IJSRCSE All Rights Reserved 51

25, and 30 switches. However, can see from Figure 9, the

throughput values decrease dramatically, going down from

6500 flows/second to only 750 flows/second making this

controller rather in efficient in controlling moderate size

networks of around 30 switches.

V. CONCLUSION AND FUTURE SCOPE

In this research we provided an overview of Software

Defined Networking terminology, we reviewed the most

popular SDN controllers that support OpenFlow, and

detailed the necessary simulation, evaluation and

benchmarking tools for SDN performance analysis. We

provided a comparison of the features provided by various

SDN controllers with a more in depth analysis and

evaluation of the Ryu controller in terms of latency and

throughput. We can conclude from our results the

performance degradation of the Ryu controller with the

increase of the number of switches making it unsuitable for

medium size networks. Our plan for future work is to test in

details the performance of other SDN controllers and to

develop hardware implementations of these controllers to

test them in realistic networks rather than using network

emulators that may result in inaccurate performance

measurements due to dependency on the hosting

environment.

REFERENCES

[1] T. Li, J. Chen, and H. Fu, “Application Scenarios based on

SDN: An Overview,” J. Phys. Conf. Ser., vol. 1187, no. 5, 2019.

[2] A. U. Rehman, R. L. Aguiar, and J. P. Barraca, “Network

Functions Virtualization: The Long Road to Commercial

Deployments,” IEEE Access, vol. 7, pp. 60439–60464, 2019.

[3] L. Yue, C. Junyan, L. Chuxin, and L. Xiaochun, “Research on

SDN Multi Controller Deployment based on K-means++,” J.

Phys. Conf. Ser., vol. 1606, no. 1, 2020.

[4] A. Mahmoud, A. Abo Naser, M. Abu-Amara, T. Sheltami, and

N. Nasser, “Software-defined networking approach for

enhanced evolved packet core network,” Int. J. Commun. Syst.,

vol. 31, no. 1, pp. 1–15, 2018.

[5] X. Tian, L. Wen, X. Yang, L. Chen, G. Min, and Z. Shu,

“Research on Network Routing Control Algorithm Based on

OpenFlow and IGP,” J. Phys. Conf. Ser., vol. 2218, no. 1, 2022.

[6] H. Babbar and S. Rani, “Performance evaluation of QoS metrics

in software defined networking using ryu controller,” IOP Conf.

Ser. Mater. Sci. Eng., vol. 1022, no. 1, 2021.

[7] B. Heller, R. Sherwood, and N. Mckeown, “The controller

placement problem,” Comput. Commun. Rev., vol. 42, no. 4,

pp. 473–478, 2012.

[8] A. Haggag, “Network Optimization for Improved Performance

and Speed for SDN and Security Analysis of SDN

Vulnerabilities,” J. Comput. Networks Commun., vol. 7, no. 5,

pp. 83–90, 2019.
[9] A. Haggag, H. Youssef, I. Ali, and F. M. Salem, “Security

Overview of Software Defined Networks : Threats and

Countermeasures,” vol. 9, no. 5, pp. 348–355, 2022.

[10] A. Haggag, “Benchmarking and Performance Analysis of

Software Defined Networking Controllers in Normal and

Failsafe Operations using Multiple Redundant Controllers,” vol.

12, no. 13, pp. 5192–5202, 2021.

[11] A. Haggag and D. Hanafy, “Network Performance and Security

Analysis of Software Defined Networking,” vol. 9, no. 6, pp.

41–47, 2021.

[12] A. Orogat, I. Liu, and A. El-Roby, “Cbench: Towards better

evaluation of question answering knowledge graphs,” Proc.

VLDB Endow., vol. 14, no. 8, pp. 1325–1337, 2021.

[13] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore,

“OFLOPS: An open framework for OpenFlow switch

evaluation,” Lect. Notes Comput. Sci. (including Subser. Lect.

Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7192

LNCS, no. March, pp. 85–95, 2012.

[14] K. Kaur, J. Singh, and N. S. Ghumman, “Mininet as Software

Defined Networking Testing Platform,” Int. Conf. Commun.

Comput. Syst., no. August, pp. 3–6, 2014.

[15] Y. D. Lin, Y. K. Lai, C. Y. Wang, and Y. C. Lai, “OFBench:

Performance test suite on OpenFlow switches,” IEEE Syst. J.,

vol. 12, no. 3, pp. 2949–2959, 2018.

AUTHORS PROFILE

Ayman Haggag was born in

Cairo, Egypt in 1971. He received

his B.Sc. degree from Ain

Shams University, Egypt, in June

1994, M.Sc. degree from

Eindhoven University of

Technology, The Netherlands, in

December 1997, and Ph.D. degree

from Chiba University, Japan, in September 2008.

Presently, he is an Associate Professor of

Communications Engineering at the Electronics

Technology Department, Faculty of Technology and

Education, Helwan University, Egypt. His current

research interests are in the fields of Network

Security, Wireless Security, Software Defined

Networking and Wireless Sensor Networks.

Sana Awad Master Student,

Electronics Technology Department,

Faculty of Technology and

Education, Helwan University,

Egypt. She received her Bachelor

degre in Industrial Education from

Beni Suef university in June 2006.

She started persuing her master study

in September 2019. Her research interests are in the field

of network performance analysis and Software Defined

Networking.

Ali Saad Gaballah Professor of

Curriculum, Teaching Arabic and

Islamic Studies, Department of

Curriculum, Teaching Methods and

Instructional Technology, Faculty of

Education, Benha University.

Professor Ali was born on

13/12/1958. He received his B.Sc. in

May 1981, his M.Sc. on 18/2/1987, and his Ph.D. on

8/2/1992. He authered and published serveral books and

research articles in the filed of education and linguistics.

