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Abstract— Reinforcement learning of neural networks requires gradient-free algorithms because labeled training data are 

not available. Evolutionary algorithms are applicable to the reinforcement learning because the algorithms do not rely on 

gradients. To successfully train neural networks by evolutionary algorithms, we need to carefully choose appropriate 

algorithms because many algorithm variations are available. The author experimentally evaluates Evolution Strategy, an 

instance of evolutionary algorithms, for the reinforcement learning of neural networks. A pendulum control task is adopted 

in this work. Experimental results revealed that ES could successfully train an MLP so that the trained MLP could make 

and keep the pendulum upright quickly, if the MLP was equipped with sufficient hidden units. For the task adopted in this 

work, 16 units are the best among 8, 16 and 32 units in terms of the task performance and the computational efficiency. 

Besides, the results revealed that exploration contributes more for ES to search for better solutions than exploitation. 

 

Keywords—Evolutionary algorithm; Evolution strategy; Neural network; Neuroevolution; Reinforcement learning. 

 

I. INTRODUCTION  

 

Neural networks can be trained by gradient based methods 

for supervised learning tasks where labeled training data 

are available: errors between neural network outputs and 

their target values can be observed and the errors can be 

backpropagated through the neural networks to modify 

node connection weights and node biases. On the contrary, 

neural networks require gradient-free training algorithms 

for reinforcement learning tasks, because labeled training 

data are not available. Evolutionary algorithms [1-5] are 

applicable to the reinforcement learning of neural networks 

because the algorithms do not rely on gradients. Q learning 

[6-8] is also a representative reinforcement learning 

method. Q learning needs to obtain reward 𝑟(𝑡) for action 

𝑎(𝑡)  at state 𝑠(𝑡)  to determine the next action 𝑎(𝑡 + 1) 

where 𝑡 is the time step. Evolutionary algorithms do not 

need 𝑟(𝑡) at every step but an evaluation after an episode 

is finished. Thus, evolutionary algorithms release us from 

designing appropriate reward for every pair of state and 

action. Evolution Strategy [9,10], Genetic Algorithm [11-

14], Deferential Evolution [15-17] are representative 

evolutionary algorithms. To successfully train neural 

networks by evolutionary algorithms, we need to carefully 

i) choose appropriate algorithms because many algorithm 

variations are available and ii) design its hyperparameters 

because the design substantially affects performance. The 

author experimentally evaluates Evolution Strategy for the 

reinforcement learning of neural networks. A pendulum 

control task is adopted in this work.  

 

 

II. PENDULUM CONTROL TASK 

 

As a task that requires reinforcement learning to solve, this 

work employs “Pendulum” control task
1,2

 provided at 

OpenAI Gym
3
. The goal is “to swing the pendulum up so it 

stays upright”.
1
 Fig. 1 shows a screenshot of the system. 

The round arrow shows the direction and the strength of 

the torque by the controller.  

 

 
Figure 1.  Pendulum System.1 

 

The author changed the system so that the control task 

starts with the pendulum at the opposite position to the 

goal, i.e., the task starts with the state shown in Fig. 2(a) 

and the goal is to make and keep the pendulum as shown in 

Fig. 2(b). In addition, the author changed the system so 

that the control task starts with the pendulum with 0 

angular velocity. 

http://www.isroset.org/
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(a) Initial state:  

angular 𝜃 = ±𝜋 

(b) Goal state:  

angular 𝜃 = 0 

Figure 2.  Initial and Goal States. 

 

One episode consists of 200 time steps. In each step, the 

controller observes the current state and then determines 

the action. An observation obtains cos(θ), sin(θ) and the 

angular velocity where −1.0 ≤ cos(θ) ≤ 1.0 , −1.0 ≤
sin(θ) ≤ 1.0  and −8.0 ≤ angular velocity ≤ 8.0 . The 

action is the torque to the pendulum where −2.0 ≤
torque ≤ 2.0. Note that the pendulum never reaches from 

the initial position to the goal position with the fixed 

torque 2.0 (or −2.0): the pendulum needs to be swinged so 

that the controller gets assisted by the gravity to let the 

angular velocity enough to climb over.  

In this work, the author defines the fitness of a neural 

network controller as: 

Fitness =
1

200
∑ (1 − Error(t))

200

t=1
, (1) 

Error(t) =
|θ(t)|

𝜋
. (2) 

θ(t) denotes the angular at time step t. In the initial state, 

Error(t) = |±𝜋|/𝜋 = 1  so that 1 − Error(t) = 0 . In the 

goal state, Error(t) = 0/𝜋 = 0 so that 1 − Error(t) = 1. 

The fitness score is larger as Error(t) is smaller for more 

time steps. Thus, an MLP controller fits better as it can 

make the pendulum upright more quickly and keeps the 

state for longer time steps.  

 

III. NEURAL NETWORKS 

 

In this work, the author adopts a three-layered feedforward 

neural network (a multilayer perceptron, MLP [18,19]) as 

the controller. Fig. 3 shows the topology of the MLP. 

Equations (3)-(7) show the feedforward calculations. 

 

 
Figure 3.  Topology of Neural Network in this Work. 

 

Input layer:  

𝑜𝑢𝑡𝑖
(1)

= 𝑥𝑖 , 𝑖 = 1,2, … , 𝑁 (3) 

Hidden layer:  

𝑖𝑛𝑗
(2)

= 𝜃𝑗
(2)

+ ∑ 𝑤𝑖,𝑗
(2)

𝑖
𝑜𝑢𝑡𝑖

(1)
, 𝑗 = 1,2, … , 𝑀 (4) 

𝑜𝑢𝑡𝑗
(2)

= ℎ(𝑖𝑛𝑗
(2)

) , 𝑗 = 1,2, … , 𝑀 (5) 

Output layer:  

𝑖𝑛𝑘
(3)

= 𝜃𝑘
(3)

+ ∑ 𝑤𝑗,𝑘
(3)

𝑗
𝑜𝑢𝑡𝑗

(2)
, 𝑘 = 1,2, … , 𝐿 (6) 

𝑜𝑢𝑡𝑘
(3)

= ℎ(𝑖𝑛𝑘
(3)

), 𝑘 = 1,2, … , 𝐿 (7) 

The symbols in (3)-(7) denote as follows:  

𝑥𝑖 Input value to 𝑖-th input unit. 

𝑜𝑢𝑡𝑖
(1)

 Output value from 𝑖-th input unit. 

𝑖𝑛𝑗
(2)

 Input value to 𝑗-th hidden unit. 

𝑤𝑖,𝑗
(2)

 Weight value of connection from 𝑖-th input unit to  

𝑗-th hidden unit. 

𝜃𝑗
(2)

 Bias value of 𝑗-th hidden unit. 

𝑜𝑢𝑡𝑗
(2)

 Output value from 𝑗-th hidden unit. 

𝑖𝑛𝑘
(3)

 Input value to 𝑘-th output unit. 

𝑤𝑗,𝑘
(3)

 Weight value of connection from 𝑗-th hidden unit 

to 𝑘-th output unit. 

𝜃𝑘
(3)

 Bias value of 𝑘-th output unit. 

𝑜𝑢𝑡𝑘
(3)

 Output value from 𝑘-th output unit. 

ℎ()  is a unit activation function, where the hyperbolic 

tangent (tanh) is adopted in this work. Fig. 4 shows the 

shape of tanh function.  

ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (8) 

−1.0 < ℎ(𝑥) < 1.0 (9) 

 

 
Figure 4.  Tanh Function. 

 

The MLP works as a policy function in this work: 

𝑎𝑐𝑡𝑖𝑜𝑛(𝑡)  =  𝐹(𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑡)). The number of units in 

the input layer is three, where the value of cos(θ), sin(θ) 

and the angular velocity described in Section II are input to 

the three units respectively. The value of angular velocity 

is divided by 8.0 so that the input value becomes within the 

range [−1.0, 1.0]. The number of units in the output layer 

is one, and the output value from the unit is applied as the 

torque to the pendulum. The output value is multiplied by 

2.0 so that the torque becomes within the range 

[−2.0, 2.0].  

-1

0

1

-4 -2 0 2 4
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IV. TRAINING OF NEURAL NETWORKS BY 

EVOLUTION STRATEGY 

 

A three-layered perceptron with the topology shown in Fig. 

3 includes 𝑀 + 𝐿 units and 𝑁𝑀 + 𝑀𝐿 connections. Thus, 

the total number of parameters in the perceptron is 

𝑀 + 𝐿 + 𝑁𝑀 + 𝑀𝐿 . Let 𝐷  denote the number 𝑀 + 𝐿 +
𝑁𝑀 + 𝑀𝐿 . Training of the perceptron in Fig. 3 is 

equivalent to optimization of the D-dimensional real 

vector. Let 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝐷) denote the D-dimensional 

vector, where each 𝑥𝑖  corresponds to one of the 𝐷 

parameters in the perceptron. The feedforward calculation 

in (3)-(7) can be processed by applying each value in 𝑥 to 

its corresponding connection weight or unit bias.  

 

Training of neural networks by evolutionary algorithms is 

called neuroevolution [20,21]. Neuroevolution has been 

applied to games [22-25], e.g., Togelius et al. [25] applied 

neuroevolution to simulated car racing. In this work, the D-

dimensional vector 𝑥 is optimized by ES. ES processes 𝑥 

as chromosome and applies evolutionary operators to 𝑥 . 

The fitness of 𝑥 is measured by (1).  

 

Fig. 5 shows the process of ES. In Step 1, vectors 

𝑦1, 𝑦2, . . . , 𝑦𝐶  are randomly initialized within a preset 

range, [𝑚𝑖𝑛, 𝑚𝑎𝑥]𝐷 , where 𝐶  denotes the number of 

offsprings. A larger value of 𝐶 promotes explorative search 

more. In this work, 𝑚𝑖𝑛  and 𝑚𝑎𝑥  are set as −10.0  and 

10.0  respectively. In Step 2, values in each vector 𝑦𝑐 

( 𝑐 = 1,2, . . . , 𝐶 ) are applied to the MLP and the MLP 

controls the pendulum for a single episode with 200 time 

steps. The fitness of 𝑦𝑐 is then evaluated with the result of 

the episode. Let 𝑓(𝑦𝑐) denote the fitness. In Step 3, the 

loop of evolutionary training is finished if a preset 

condition is satisfied. A simple example of the condition is 

the limit number of fitness evaluations. In Step 4, among 

the 𝑃  vectors in the current parent population 

(𝑧1, 𝑧2, . . . , 𝑧𝑃 ) and the 𝐶  vectors in the current offspring 

population (𝑦1, 𝑦2, . . . , 𝑦𝐶 ), vectors with the top 𝑃 fitness 

scores survive as the parents in the next reproduction and 

the remaining vectors are deleted. 𝑃 denotes the number of 

parents. A smaller value of 𝑃 promotes exploitive search 

more. Note that, for the first time of Step 4, the parent 

population is empty so that vectors with the top 𝑃 fitness 

scores survive among the 𝐶 vectors in the current offspring 

population ( 𝑦1, 𝑦2, . . . , 𝑦𝐶 ). In Step 5, new 𝐶  offspring 

vectors are produced by applying the reproduction operator 

to the parent vectors 𝑧1, 𝑧2, . . . , 𝑧𝑃 which are selected in the 

last Step 4. The new offspring vectors form the new 

offspring population 𝑦1, 𝑦2, . . . , 𝑦𝐶 .  Fig. 6 denotes the 

process of reproduction.  
 

Step 1. Initialization 

Step 2. Fitness Evaluation 

Step 3. Conditional Termination 

Step 4. Selection 

Step 5. Reproduction 

Step 6. Goto Step 2 

Figure 5.  Process of Evolution Strategy. 

Step 5-1. Let 𝑐 = 1. 

Step 5-2. A vector is randomly sampled from the parent 

population 𝑧1, 𝑧2, . . . , 𝑧𝑃. Let 𝑧𝑝 denote the sampled vector.  

Step 5-3. A copy of 𝑧𝑝  is created as 𝑦𝑐 . 𝑦𝑐  is a D-

dimensional vector, i.e., 𝑦𝑐 = (𝑦1
𝑐 , 𝑦2

𝑐 , . . . , 𝑦𝐷
𝑐 ). 

Step 5-4. Each of 𝑦1
𝑐 , 𝑦2

𝑐 , . . . , 𝑦𝐷
𝑐  is perturbed by (10)-(12) 

where 𝑠 is a hyperparameter called step size and 𝑟𝑎𝑛𝑑 is a 

uniform random number sampled from the interval 

[−1.0, 1.0] . A greater value of 𝑠  promotes explorative 

search more.  

Step 5-5. If 𝑐 <  𝐶 then 𝑐 ← 𝑐 + 1 and goto Step 5-2, else 

finish the reproduction. 

Figure 6.  Process of Reproduction in Evolution Strategy. 
 

𝑦𝑑
𝑐 ← 𝑦𝑑

𝑐 + 𝑠 ∗ 𝑟𝑎𝑛𝑑 (10) 

𝑖𝑓 𝑦𝑑
𝑐 < 𝑚𝑖𝑛 𝑡ℎ𝑒𝑛 𝑦𝑑

𝑐 ← 𝑚𝑖𝑛 (11) 

𝑖𝑓 max < 𝑦𝑑
𝑐  𝑡ℎ𝑒𝑛 𝑦𝑑

𝑐 ← 𝑚𝑎𝑥 (12) 

 

V. EXPERIMENT  
 

The neural network adopted as a pendulum controller in 

this word is a multilayer perceptron with a single hidden 

layer. Every unit is fully connected to units in the next 

layer. The ability of MLPs in modeling nonlinear functions 

depends on the number of hidden units.  

 

Evolutionary optimization of an MLP with a smaller 

number of units is easier because the genotype length (the 

number of variables to be optimized) is smaller. However, 

an MLP with a smaller number of units may not be able to 

successfully control the pendulum because the MLP has 

insufficient modeling ability. On the contrary, an MLP 

with a larger number of units is likely to successfully 

control the pendulum, but evolutionary optimization of the 

larger MLP becomes more difficult because the genotype 

length is larger. Besides, an MLP with a larger number of 

units requires more memory to implement on a computer. 

This tradeoff must be managed by designing appropriate 

number of hidden units for the task. In this work, the 

author investigates three variations: 8, 16, and 32 hidden 

units.  

 

The hyperparameters of ES are empirically set as shown in 

Table 1 based on results of preparatory experiments. The 

number of generations is 500 (or 100) if population size is 

100 (or 500) so that the number of fitness evaluations is 

consistently 50,000 ( =  number of generations × 

population size).  

 

An MLP with 8, 16 or 32 hidden units is trained 11 times 

independently. Table 2 shows the best/median/worst 

fitness scores of the trained MLPs among the 11 runs. For 

example, the best MLP with 8 hidden units achieved 

(a)0.829 and (b)0.833 while the worst MLP with the same 

number of hidden units achieved (a)0.520 and (b)0.583. 
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Table 2(a) reveals that the median fitness score with 8 

units is substantially smaller than those with 16 and 32 

units, which indicates 8 hidden units are not sufficient for 

this task. Besides, Table 2(a)(b) reveal that the fitness 

scores with 32 units are close to those with 16 units, which 

indicates 16 units are sufficient to the task and units more 

than 16 are unnecessary because they do not contribute 

well to improve the fitness scores.  

 
Table 1. ES Hyperparameters 

 
 

Table 2. Best/Median/Worst Fitness Scores among 11 Runs 

(a) Population size = 10, 500 Generations. 

 

(b) Population size = 50, 100 Generations. 

 
 

Wilcoxson rank sum tests are applied to test whether the 

fitness scores with 8 (16 or 32) hidden units are 

significantly better than those with other number of units. 

Table 3 shows the test result. Table 3 reveals that (1) the 

fitness scores with 16 units and 32 units are significantly 

better than those with 8 units, and (2) the fitness scores 

with 32 units are not significantly better than those with 16 

units. The test result confirms that 16 units are sufficient.  

 
Table 3. Wilcoxson Rank Sum Tests for Number of Hidden Units 

(a) Population size = 10, 500 Generations. 

 

(b) Population size = 50, 100 Generations. 

 
(*)p<.05 (**)p<.01 

 

Fig. 7 shows the best/median/worst learning curves among 

the 11 runs with 8 hidden units. Fig. 8 and Fig. 9 show 

those with 16 and 32 units respectively. These learning 

curves reveal that the fitness scores tend to increase slower 

while the scores are in [0.4, 0.6] and [0.7, 0.8]. Thus, it is 

easy for ES to train MLPs so that the MLPs achieve fitness 

scores of 0.4, but after that it becomes much difficult to 

train them so that they control the pendulum better. In the 

worst run among the 11 runs, ES failed to train MLPs to 

break thorough the score of 0.6. This result reveals a 

weakness of ES on robustly searching for better solutions.  

 

 
(a) Population size = 10, 500 Generations. 

 

 
(b) Population size = 50, 100 Generations. 

Figure 7.  Learning curves with 8 hidden units. 

 
(a) Population size = 10, 500 Generations. 

(a) (b)

Population size 10 50

Generations 500 100

Fitness evaluations 50000 50000

Number of parents 5 5

Step size 1 1

Units Best Median Worst

8 0.829 0.612 0.520

16 0.833 0.823 0.579

32 0.832 0.831 0.613

Units Best Median Worst

8 0.833 0.825 0.583

16 0.833 0.832 0.612

32 0.833 0.831 0.586

Units Units p-value

16 8 0.01680 *

32 8 0.00093 **

32 16 0.42350

Units Units p-value

16 8 0.01165 *

32 8 0.01999 *

32 16 0.71910
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(b) Population size = 50, 100 Generations. 

Figure 8.  Learning curves with 16 hidden units. 

 

 
(a) Population size = 10, 500 Generations. 

 
(b) Population size = 50, 100 Generations. 

Figure 9.  Learning curves with 32 hidden units. 

This experiment employs two sets of ES hyperparameters 

as shown in Table 1. Although the total number of 

evaluations are consistently 50,000 for both (a) and (b), (a) 

employs less population size and more generations while 

(b) employs more population size and less generations. 

Thus, ES with (a) parameters will be better at exploiting 

locally better solutions while ES with (b) parameters will 

better at exploring globally better solutions. Table 2 

reveals that fitness scores are greater for (b) than (a) 

especially with 8 units. Wilcoxson rank sum tests are 

applied to test whether (b) is significantly better than (a) on 

this task. Table 4 shows the test result.  

Table 4. Wilcoxson Rank Sum Tests for ES parameters. 

 
(*)p<.05 

Table 4 reveals that (b) is significantly better than (a) with 

8 units. Although the p-values are greater than 0.05 with 

16 and 32 units, the p-values are much smaller than 0.5, 

which mean (b) is better than (a) with 16 and 32 units. 

Thus, on the task employed in this experiment, exploration 

contributes more for ES to search for better solutions.  
 

The author next reports how actions and errors are changed 

after the MLP is trained. Fig. 10(i)(ii) show the actions and 

errors by the MLP (i)before/(ii)after trained. To show the 

figures, MLPs with 16 units trained by ES with (a) 

parameters are employed.  
 

Fig. 10(i) reveals that (1) the MLP before trained repeats 

the actions (the torque to the pendulum) of -2.0 and 2.0, (2) 

the error repeats decreasing and increasing, and (3) the 

error does not become small enough.  
 

In contrast, Fig. 10(ii) reveals that (1) the MLP after 

trained successfully makes the error to be nearly zero (i.e., 

the MLP successfully makes the pendulum to be upright), 

and (2) after the error becomes nearly zero, the action also 

becomes quickly nearly zero so that the pendulum stays 

upright.  

Movies which show how the pendulum is controlled by the 

MLPs before/after trained are presented as supplements.
4,5

 

 

 
(i) before 

 
(ii) after 

Figure 10.  Actions and errors by the MLP before/after trained. 
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VI. CONCLUSION 

 

The author experimentally applied Evolution Strategy to 

reinforcement learning of a neural network controller for 

the pendulum control task. Experimental results revealed 

that ES could successfully train an MLP so that the trained 

MLP could make the pendulum upright quickly, if the 

MLP was equipped with sufficient hidden units. For the 

task adopted in this work, 8 hidden units were significantly 

worse than 16 and 32 hidden units while 32 hidden units 

were not significantly better than 16 units. Thus, 16 units 

are the best among the three variations, in terms of the task 

performance and the computational efficiency. Besides, the 

results revealed that exploration contributes more for ES to 

search for better solutions than exploitation. Further 

evaluations are required to confirm whether this finding 

holds for evolutionary algorithms other than ES. In 

addition, the author will further evaluate and improve 

evolutionary algorithms by applying them to reinforcement 

learning tasks other than the pendulum control.  
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