

© 2022, IJSRCSE All Rights Reserved 13

International Journal of Scientific Research in ____________________________ Research Paper.
Computer Science and Engineering

Vol.10, Issue.3, pp.13-18, June (2022) E-ISSN: 2320-7639

Evolutionary Reinforcement Learning of Neural Network Controller

for Pendulum Task by Evolution Strategy

Hidehiko Okada

Faculty of Information Science and Engineering, Kyoto Sangyo University, Kyoto, Japan

Author’s Mail Id: hidehiko@cc.kyoto-su.ac.jp

 Available online at: www.isroset.org

Received: 27/Apr/2022, Accepted: 29/May/2022, Online: 30/Jun/2022

Abstract— Reinforcement learning of neural networks requires gradient-free algorithms because labeled training data are

not available. Evolutionary algorithms are applicable to the reinforcement learning because the algorithms do not rely on

gradients. To successfully train neural networks by evolutionary algorithms, we need to carefully choose appropriate

algorithms because many algorithm variations are available. The author experimentally evaluates Evolution Strategy, an

instance of evolutionary algorithms, for the reinforcement learning of neural networks. A pendulum control task is adopted

in this work. Experimental results revealed that ES could successfully train an MLP so that the trained MLP could make

and keep the pendulum upright quickly, if the MLP was equipped with sufficient hidden units. For the task adopted in this

work, 16 units are the best among 8, 16 and 32 units in terms of the task performance and the computational efficiency.

Besides, the results revealed that exploration contributes more for ES to search for better solutions than exploitation.

Keywords—Evolutionary algorithm; Evolution strategy; Neural network; Neuroevolution; Reinforcement learning.

I. INTRODUCTION

Neural networks can be trained by gradient based methods

for supervised learning tasks where labeled training data

are available: errors between neural network outputs and

their target values can be observed and the errors can be

backpropagated through the neural networks to modify

node connection weights and node biases. On the contrary,

neural networks require gradient-free training algorithms

for reinforcement learning tasks, because labeled training

data are not available. Evolutionary algorithms [1-5] are

applicable to the reinforcement learning of neural networks

because the algorithms do not rely on gradients. Q learning

[6-8] is also a representative reinforcement learning

method. Q learning needs to obtain reward 𝑟(𝑡) for action

𝑎(𝑡) at state 𝑠(𝑡) to determine the next action 𝑎(𝑡 + 1)

where 𝑡 is the time step. Evolutionary algorithms do not

need 𝑟(𝑡) at every step but an evaluation after an episode

is finished. Thus, evolutionary algorithms release us from

designing appropriate reward for every pair of state and

action. Evolution Strategy [9,10], Genetic Algorithm [11-

14], Deferential Evolution [15-17] are representative

evolutionary algorithms. To successfully train neural

networks by evolutionary algorithms, we need to carefully

i) choose appropriate algorithms because many algorithm

variations are available and ii) design its hyperparameters

because the design substantially affects performance. The

author experimentally evaluates Evolution Strategy for the

reinforcement learning of neural networks. A pendulum

control task is adopted in this work.

II. PENDULUM CONTROL TASK

As a task that requires reinforcement learning to solve, this

work employs “Pendulum” control task
1,2

 provided at

OpenAI Gym
3
. The goal is “to swing the pendulum up so it

stays upright”.
1
 Fig. 1 shows a screenshot of the system.

The round arrow shows the direction and the strength of

the torque by the controller.

Figure 1. Pendulum System.1

The author changed the system so that the control task

starts with the pendulum at the opposite position to the

goal, i.e., the task starts with the state shown in Fig. 2(a)

and the goal is to make and keep the pendulum as shown in

Fig. 2(b). In addition, the author changed the system so

that the control task starts with the pendulum with 0

angular velocity.

http://www.isroset.org/

 Int. J. Sci. Res. in Computer Science and Engineering Vol.10, Issue.3, Jun 2022

© 2022, IJSRCSE All Rights Reserved 14

(a) Initial state:

angular 𝜃 = ±𝜋

(b) Goal state:

angular 𝜃 = 0

Figure 2. Initial and Goal States.

One episode consists of 200 time steps. In each step, the

controller observes the current state and then determines

the action. An observation obtains cos(θ), sin(θ) and the

angular velocity where −1.0 ≤ cos(θ) ≤ 1.0 , −1.0 ≤
sin(θ) ≤ 1.0 and −8.0 ≤ angular velocity ≤ 8.0 . The

action is the torque to the pendulum where −2.0 ≤
torque ≤ 2.0. Note that the pendulum never reaches from

the initial position to the goal position with the fixed

torque 2.0 (or −2.0): the pendulum needs to be swinged so

that the controller gets assisted by the gravity to let the

angular velocity enough to climb over.

In this work, the author defines the fitness of a neural

network controller as:

Fitness =
1

200
∑ (1 − Error(t))

200

t=1
, (1)

Error(t) =
|θ(t)|

𝜋
. (2)

θ(t) denotes the angular at time step t. In the initial state,

Error(t) = |±𝜋|/𝜋 = 1 so that 1 − Error(t) = 0 . In the

goal state, Error(t) = 0/𝜋 = 0 so that 1 − Error(t) = 1.

The fitness score is larger as Error(t) is smaller for more

time steps. Thus, an MLP controller fits better as it can

make the pendulum upright more quickly and keeps the

state for longer time steps.

III. NEURAL NETWORKS

In this work, the author adopts a three-layered feedforward

neural network (a multilayer perceptron, MLP [18,19]) as

the controller. Fig. 3 shows the topology of the MLP.

Equations (3)-(7) show the feedforward calculations.

Figure 3. Topology of Neural Network in this Work.

Input layer:

𝑜𝑢𝑡𝑖
(1)

= 𝑥𝑖 , 𝑖 = 1,2, … , 𝑁 (3)

Hidden layer:

𝑖𝑛𝑗
(2)

= 𝜃𝑗
(2)

+ ∑ 𝑤𝑖,𝑗
(2)

𝑖
𝑜𝑢𝑡𝑖

(1)
, 𝑗 = 1,2, … , 𝑀 (4)

𝑜𝑢𝑡𝑗
(2)

= ℎ(𝑖𝑛𝑗
(2)

) , 𝑗 = 1,2, … , 𝑀 (5)

Output layer:

𝑖𝑛𝑘
(3)

= 𝜃𝑘
(3)

+ ∑ 𝑤𝑗,𝑘
(3)

𝑗
𝑜𝑢𝑡𝑗

(2)
, 𝑘 = 1,2, … , 𝐿 (6)

𝑜𝑢𝑡𝑘
(3)

= ℎ(𝑖𝑛𝑘
(3)

), 𝑘 = 1,2, … , 𝐿 (7)

The symbols in (3)-(7) denote as follows:

𝑥𝑖 Input value to 𝑖-th input unit.

𝑜𝑢𝑡𝑖
(1)

 Output value from 𝑖-th input unit.

𝑖𝑛𝑗
(2)

 Input value to 𝑗-th hidden unit.

𝑤𝑖,𝑗
(2)

 Weight value of connection from 𝑖-th input unit to

𝑗-th hidden unit.

𝜃𝑗
(2)

 Bias value of 𝑗-th hidden unit.

𝑜𝑢𝑡𝑗
(2)

 Output value from 𝑗-th hidden unit.

𝑖𝑛𝑘
(3)

 Input value to 𝑘-th output unit.

𝑤𝑗,𝑘
(3)

 Weight value of connection from 𝑗-th hidden unit

to 𝑘-th output unit.

𝜃𝑘
(3)

 Bias value of 𝑘-th output unit.

𝑜𝑢𝑡𝑘
(3)

 Output value from 𝑘-th output unit.

ℎ() is a unit activation function, where the hyperbolic

tangent (tanh) is adopted in this work. Fig. 4 shows the

shape of tanh function.

ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (8)

−1.0 < ℎ(𝑥) < 1.0 (9)

Figure 4. Tanh Function.

The MLP works as a policy function in this work:

𝑎𝑐𝑡𝑖𝑜𝑛(𝑡) = 𝐹(𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑡)). The number of units in

the input layer is three, where the value of cos(θ), sin(θ)

and the angular velocity described in Section II are input to

the three units respectively. The value of angular velocity

is divided by 8.0 so that the input value becomes within the

range [−1.0, 1.0]. The number of units in the output layer

is one, and the output value from the unit is applied as the

torque to the pendulum. The output value is multiplied by

2.0 so that the torque becomes within the range

[−2.0, 2.0].

-1

0

1

-4 -2 0 2 4

 Int. J. Sci. Res. in Computer Science and Engineering Vol.10, Issue.3, Jun 2022

© 2022, IJSRCSE All Rights Reserved 15

IV. TRAINING OF NEURAL NETWORKS BY

EVOLUTION STRATEGY

A three-layered perceptron with the topology shown in Fig.

3 includes 𝑀 + 𝐿 units and 𝑁𝑀 + 𝑀𝐿 connections. Thus,

the total number of parameters in the perceptron is

𝑀 + 𝐿 + 𝑁𝑀 + 𝑀𝐿 . Let 𝐷 denote the number 𝑀 + 𝐿 +
𝑁𝑀 + 𝑀𝐿 . Training of the perceptron in Fig. 3 is

equivalent to optimization of the D-dimensional real

vector. Let 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝐷) denote the D-dimensional

vector, where each 𝑥𝑖 corresponds to one of the 𝐷

parameters in the perceptron. The feedforward calculation

in (3)-(7) can be processed by applying each value in 𝑥 to

its corresponding connection weight or unit bias.

Training of neural networks by evolutionary algorithms is

called neuroevolution [20,21]. Neuroevolution has been

applied to games [22-25], e.g., Togelius et al. [25] applied

neuroevolution to simulated car racing. In this work, the D-

dimensional vector 𝑥 is optimized by ES. ES processes 𝑥

as chromosome and applies evolutionary operators to 𝑥 .

The fitness of 𝑥 is measured by (1).

Fig. 5 shows the process of ES. In Step 1, vectors

𝑦1, 𝑦2, . . . , 𝑦𝐶 are randomly initialized within a preset

range, [𝑚𝑖𝑛, 𝑚𝑎𝑥]𝐷 , where 𝐶 denotes the number of

offsprings. A larger value of 𝐶 promotes explorative search

more. In this work, 𝑚𝑖𝑛 and 𝑚𝑎𝑥 are set as −10.0 and

10.0 respectively. In Step 2, values in each vector 𝑦𝑐

(𝑐 = 1,2, . . . , 𝐶) are applied to the MLP and the MLP

controls the pendulum for a single episode with 200 time

steps. The fitness of 𝑦𝑐 is then evaluated with the result of

the episode. Let 𝑓(𝑦𝑐) denote the fitness. In Step 3, the

loop of evolutionary training is finished if a preset

condition is satisfied. A simple example of the condition is

the limit number of fitness evaluations. In Step 4, among

the 𝑃 vectors in the current parent population

(𝑧1, 𝑧2, . . . , 𝑧𝑃) and the 𝐶 vectors in the current offspring

population (𝑦1, 𝑦2, . . . , 𝑦𝐶), vectors with the top 𝑃 fitness

scores survive as the parents in the next reproduction and

the remaining vectors are deleted. 𝑃 denotes the number of

parents. A smaller value of 𝑃 promotes exploitive search

more. Note that, for the first time of Step 4, the parent

population is empty so that vectors with the top 𝑃 fitness

scores survive among the 𝐶 vectors in the current offspring

population (𝑦1, 𝑦2, . . . , 𝑦𝐶). In Step 5, new 𝐶 offspring

vectors are produced by applying the reproduction operator

to the parent vectors 𝑧1, 𝑧2, . . . , 𝑧𝑃 which are selected in the

last Step 4. The new offspring vectors form the new

offspring population 𝑦1, 𝑦2, . . . , 𝑦𝐶 . Fig. 6 denotes the

process of reproduction.

Step 1. Initialization

Step 2. Fitness Evaluation

Step 3. Conditional Termination

Step 4. Selection

Step 5. Reproduction

Step 6. Goto Step 2

Figure 5. Process of Evolution Strategy.

Step 5-1. Let 𝑐 = 1.

Step 5-2. A vector is randomly sampled from the parent

population 𝑧1, 𝑧2, . . . , 𝑧𝑃. Let 𝑧𝑝 denote the sampled vector.

Step 5-3. A copy of 𝑧𝑝 is created as 𝑦𝑐 . 𝑦𝑐 is a D-

dimensional vector, i.e., 𝑦𝑐 = (𝑦1
𝑐 , 𝑦2

𝑐 , . . . , 𝑦𝐷
𝑐).

Step 5-4. Each of 𝑦1
𝑐 , 𝑦2

𝑐 , . . . , 𝑦𝐷
𝑐 is perturbed by (10)-(12)

where 𝑠 is a hyperparameter called step size and 𝑟𝑎𝑛𝑑 is a

uniform random number sampled from the interval

[−1.0, 1.0] . A greater value of 𝑠 promotes explorative

search more.

Step 5-5. If 𝑐 < 𝐶 then 𝑐 ← 𝑐 + 1 and goto Step 5-2, else

finish the reproduction.

Figure 6. Process of Reproduction in Evolution Strategy.

𝑦𝑑
𝑐 ← 𝑦𝑑

𝑐 + 𝑠 ∗ 𝑟𝑎𝑛𝑑 (10)

𝑖𝑓 𝑦𝑑
𝑐 < 𝑚𝑖𝑛 𝑡ℎ𝑒𝑛 𝑦𝑑

𝑐 ← 𝑚𝑖𝑛 (11)

𝑖𝑓 max < 𝑦𝑑
𝑐 𝑡ℎ𝑒𝑛 𝑦𝑑

𝑐 ← 𝑚𝑎𝑥 (12)

V. EXPERIMENT

The neural network adopted as a pendulum controller in

this word is a multilayer perceptron with a single hidden

layer. Every unit is fully connected to units in the next

layer. The ability of MLPs in modeling nonlinear functions

depends on the number of hidden units.

Evolutionary optimization of an MLP with a smaller

number of units is easier because the genotype length (the

number of variables to be optimized) is smaller. However,

an MLP with a smaller number of units may not be able to

successfully control the pendulum because the MLP has

insufficient modeling ability. On the contrary, an MLP

with a larger number of units is likely to successfully

control the pendulum, but evolutionary optimization of the

larger MLP becomes more difficult because the genotype

length is larger. Besides, an MLP with a larger number of

units requires more memory to implement on a computer.

This tradeoff must be managed by designing appropriate

number of hidden units for the task. In this work, the

author investigates three variations: 8, 16, and 32 hidden

units.

The hyperparameters of ES are empirically set as shown in

Table 1 based on results of preparatory experiments. The

number of generations is 500 (or 100) if population size is

100 (or 500) so that the number of fitness evaluations is

consistently 50,000 (= number of generations ×

population size).

An MLP with 8, 16 or 32 hidden units is trained 11 times

independently. Table 2 shows the best/median/worst

fitness scores of the trained MLPs among the 11 runs. For

example, the best MLP with 8 hidden units achieved

(a)0.829 and (b)0.833 while the worst MLP with the same

number of hidden units achieved (a)0.520 and (b)0.583.

 Int. J. Sci. Res. in Computer Science and Engineering Vol.10, Issue.3, Jun 2022

© 2022, IJSRCSE All Rights Reserved 16

Table 2(a) reveals that the median fitness score with 8

units is substantially smaller than those with 16 and 32

units, which indicates 8 hidden units are not sufficient for

this task. Besides, Table 2(a)(b) reveal that the fitness

scores with 32 units are close to those with 16 units, which

indicates 16 units are sufficient to the task and units more

than 16 are unnecessary because they do not contribute

well to improve the fitness scores.

Table 1. ES Hyperparameters

Table 2. Best/Median/Worst Fitness Scores among 11 Runs

(a) Population size = 10, 500 Generations.

(b) Population size = 50, 100 Generations.

Wilcoxson rank sum tests are applied to test whether the

fitness scores with 8 (16 or 32) hidden units are

significantly better than those with other number of units.

Table 3 shows the test result. Table 3 reveals that (1) the

fitness scores with 16 units and 32 units are significantly

better than those with 8 units, and (2) the fitness scores

with 32 units are not significantly better than those with 16

units. The test result confirms that 16 units are sufficient.

Table 3. Wilcoxson Rank Sum Tests for Number of Hidden Units

(a) Population size = 10, 500 Generations.

(b) Population size = 50, 100 Generations.

(*)p<.05 (**)p<.01

Fig. 7 shows the best/median/worst learning curves among

the 11 runs with 8 hidden units. Fig. 8 and Fig. 9 show

those with 16 and 32 units respectively. These learning

curves reveal that the fitness scores tend to increase slower

while the scores are in [0.4, 0.6] and [0.7, 0.8]. Thus, it is

easy for ES to train MLPs so that the MLPs achieve fitness

scores of 0.4, but after that it becomes much difficult to

train them so that they control the pendulum better. In the

worst run among the 11 runs, ES failed to train MLPs to

break thorough the score of 0.6. This result reveals a

weakness of ES on robustly searching for better solutions.

(a) Population size = 10, 500 Generations.

(b) Population size = 50, 100 Generations.

Figure 7. Learning curves with 8 hidden units.

(a) Population size = 10, 500 Generations.

(a) (b)

Population size 10 50

Generations 500 100

Fitness evaluations 50000 50000

Number of parents 5 5

Step size 1 1

Units Best Median Worst

8 0.829 0.612 0.520

16 0.833 0.823 0.579

32 0.832 0.831 0.613

Units Best Median Worst

8 0.833 0.825 0.583

16 0.833 0.832 0.612

32 0.833 0.831 0.586

Units Units p-value

16 8 0.01680 *

32 8 0.00093 **

32 16 0.42350

Units Units p-value

16 8 0.01165 *

32 8 0.01999 *

32 16 0.71910

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10 100 1000

F
i
t
n
e
s
s

#Evaluations

Worst Best Median

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10 100 1000

F
i
t
n
e
s
s

#Evaluations

Worst Best Median

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10 100 1000

F
i
t
n
e
s
s

#Evaluations

Worst Best Median

 Int. J. Sci. Res. in Computer Science and Engineering Vol.10, Issue.3, Jun 2022

© 2022, IJSRCSE All Rights Reserved 17

(b) Population size = 50, 100 Generations.

Figure 8. Learning curves with 16 hidden units.

(a) Population size = 10, 500 Generations.

(b) Population size = 50, 100 Generations.

Figure 9. Learning curves with 32 hidden units.

This experiment employs two sets of ES hyperparameters

as shown in Table 1. Although the total number of

evaluations are consistently 50,000 for both (a) and (b), (a)

employs less population size and more generations while

(b) employs more population size and less generations.

Thus, ES with (a) parameters will be better at exploiting

locally better solutions while ES with (b) parameters will

better at exploring globally better solutions. Table 2

reveals that fitness scores are greater for (b) than (a)

especially with 8 units. Wilcoxson rank sum tests are

applied to test whether (b) is significantly better than (a) on

this task. Table 4 shows the test result.

Table 4. Wilcoxson Rank Sum Tests for ES parameters.

(*)p<.05

Table 4 reveals that (b) is significantly better than (a) with

8 units. Although the p-values are greater than 0.05 with

16 and 32 units, the p-values are much smaller than 0.5,

which mean (b) is better than (a) with 16 and 32 units.

Thus, on the task employed in this experiment, exploration

contributes more for ES to search for better solutions.

The author next reports how actions and errors are changed

after the MLP is trained. Fig. 10(i)(ii) show the actions and

errors by the MLP (i)before/(ii)after trained. To show the

figures, MLPs with 16 units trained by ES with (a)

parameters are employed.

Fig. 10(i) reveals that (1) the MLP before trained repeats

the actions (the torque to the pendulum) of -2.0 and 2.0, (2)

the error repeats decreasing and increasing, and (3) the

error does not become small enough.

In contrast, Fig. 10(ii) reveals that (1) the MLP after

trained successfully makes the error to be nearly zero (i.e.,

the MLP successfully makes the pendulum to be upright),

and (2) after the error becomes nearly zero, the action also

becomes quickly nearly zero so that the pendulum stays

upright.

Movies which show how the pendulum is controlled by the

MLPs before/after trained are presented as supplements.
4,5

(i) before

(ii) after

Figure 10. Actions and errors by the MLP before/after trained.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10 100 1000

Fi
tn

es
s

#Evaluations

Worst Best Median

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10 100 1000

Fi
tn

es
s

#Evaluations

Worst Best Median

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10 100 1000

F
i
t
n
e
s
s

#Evaluations

Worst Best Median

Units p-value

8 0.01680 *

16 0.10850

32 0.21920

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

0.5

1

0 50 100 150 200

Ac
ti

on

Er
ro

r

Step

Error Action

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

0.5

1

0 50 100 150 200

Ac
ti
on

Er
ro
r

Step

Error Action

 Int. J. Sci. Res. in Computer Science and Engineering Vol.10, Issue.3, Jun 2022

© 2022, IJSRCSE All Rights Reserved 18

VI. CONCLUSION

The author experimentally applied Evolution Strategy to

reinforcement learning of a neural network controller for

the pendulum control task. Experimental results revealed

that ES could successfully train an MLP so that the trained

MLP could make the pendulum upright quickly, if the

MLP was equipped with sufficient hidden units. For the

task adopted in this work, 8 hidden units were significantly

worse than 16 and 32 hidden units while 32 hidden units

were not significantly better than 16 units. Thus, 16 units

are the best among the three variations, in terms of the task

performance and the computational efficiency. Besides, the

results revealed that exploration contributes more for ES to

search for better solutions than exploitation. Further

evaluations are required to confirm whether this finding

holds for evolutionary algorithms other than ES. In

addition, the author will further evaluate and improve

evolutionary algorithms by applying them to reinforcement

learning tasks other than the pendulum control.

REFERENCES

[1] T. Bäck, H.P. Schwefel, “An Overview of Evolutionary

Algorithms for Parameter Optimization,” Evolutionary

Computation, Vol.1, No.1, pp.1-23, 1993.

[2] D.B. Fogel, “An Introduction to Simulated Evolutionary

Optimization,” IEEE Transactions on Neural Networks, Vol.5,

No.1, pp.3-14, 1994.

[3] T. Bäck, “Evolutionary Algorithms in Theory and Practice:

Evolution Strategies, Evolutionary Programming, Genetic

Algorithms,” Oxford University Press, 1996.

[4] A.E. Eiben, R. Hinterding, Z. Michalewicz, “Parameter Control

in Evolutionary Algorithms,” IEEE Transactions on

Evolutionary Computation, Vol.3, No.2, pp.124-141, 1999.

[5] A.E. Eiben, J.E. Smith, “Introduction to Evolutionary

Computing (2nd ed.),” Springer, 2015.

[6] C.J.C.H. Watkins, “Learning from Delayed Rewards,” PhD

Thesis, Cambridge University, 1989.

[7] C.J.C.H. Watkins, P. Dayan, “Q-Learning,” Machine Learning,

Vol.8, No.3, pp.279-292, 1992.

[8] R.S. Sutton, A.G. Barto, “Reinforcement Learning: An

Introduction (2nd ed.),” MIT Press, 2018.

[9] H.P. Schwefel, “Evolution Strategies: A Family of Non-Linear

Optimization Techniques based on Imitating Some Principles of

Organic Evolution,” Annals of Operations Research, Vol.1,

pp.165-167, 1984.

[10] H.G. Beyer, H.P. Schwefel, “Evolution Strategies: A Compre-

hensive Introduction,” Journal Natural Computing, Vol.1, No.1,

pp.3-52, 2002.

[11] D.E. Goldberg, J.H. Holland, “Genetic Algorithms and Machine

Learning,” Machine Learning, Vol.3, No.2, pp.95-99, 1988.

[12] J.H. Holland, “Genetic Algorithms,” Scientific American,

Vol.267, No.1, pp.66-73, 1992.

[13] M. Mitchell, “An Introduction to Genetic Algorithms,” MIT

Press, 1998.

[14] K. Sastry, D. Goldberg, G. Kendall, “Genetic Algorithms,”

Search Methodologies, Springer, pp.97-125, 2005.

[15] R. Storn, K. Price, “Differential Evolution – A Simple and

Efficient Heuristic for Global Optimization over Continuous

Spaces,” Journal of Global Optimization, Vol.11, pp.341-359,

1997.

[16] K. Price, R.M. Storn, J.A. Lampinen, “Differential Evolution: A

Practical Approach to Global Optimization,” Springer Science

& Business Media, 2006.

[17] S. Das, P.N. Suganthan, “Differential Evolution: A Survey of

the State-of-the-art,” IEEE transactions on evolutionary

computation, Vol.15, No.1, pp.4-31, 2010.

[18] D.E. Rumelhart, G.E. Hinton, R.J. Williams. “Learning Internal

Representations by Error Propagation,” in D.E. Rumelhart, J.L.

McClelland, and the PDP research group (editors), “Parallel

Distributed Processing: Explorations in the Microstructure of

Cognition,” Vol.1: Foundation. MIT Press, 1986.

[19] R. Collobert, S. Bengio, “Links Between Perceptrons, MLPs

and SVMs,” Proc. of the Twenty-First International Conference

on Machine Learning (ICML’04), ACM, 2004.

[20] X. Yao, Y. Liu, “A New Evolutionary System for Evolving

Artificial Neural Networks,” IEEE Transactions on Neural

Networks, Vol.8, No.3, pp.694-713, 1997.

[21] N.T. Siebel, G. Sommer, “Evolutionary Reinforcement Learning

of Artificial Neural Networks,” Internatinal Journal of Hybrid

Intelligent Systems, Vol.4, No.3, pp.171-183. 2007.

[22] K. Chellapilla, D.B. Fogel, “Evolving Neural Networks to Play

Checkers Without Relying on Expert Knowledge,” IEEE

Transactions on Neural Networks, Vol.10, No.6, pp.1382-1391,

1999.

[23] L. Cardamone, D. Loiacono and P. L. Lanzi, “Evolving

Competitive Car Controllers for Racing Games with Neuro-

evolution,” Proc. of 11th Annual Conference on Genetic and

Evolutinary Computation, pp.1179-1186, 2009.

[24] S. Risi, J. Togelius, “Neuroevolution in Games: State of the Art

and Open Challenges”, IEEE Transactions on Computational

Intelligence and AI in Games, Vol.9, No.1, pp.25-41, 2017.

[25] J. Togelius, S.M. Lucas, “Evolving Controllers for Simulated

Car Racing,” Proc. of 2005 IEEE Congress on Evolutionary

Computation, Vol.2, pp.1906-1913, 2005.

