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Abstract – The present paper examine the scheduling reservations of energy-efficient of virtual machine (VM) in a Cloud Data 

center. Focusing on CPU-intensive applications, the target of this paper is to schedule all reservations non-preemptively, 

subjecting to constraints to capacities of physical machine (PM) and running time interval spans, in order to minimize the 

consumption of the total energy of all physical machines. This problem is an NP-complete. The best solution for this problem 

is a 5-approximation algorithm by using First-Fit-Decreasing algorithm and 3-approximation algorithm for in case of offline 

parallel machine scheduling with unit demand. Combining the characteristics of workload and optimality in interval spans, a 

method to find the optimal solution with the minimum number of job migrations is proposed, and a 2-approximation algorithm 

called Longest Loaded Interval First algorithm (LLIF) for general cases. At the end, how the algorithms are applied to 

minimize the total energy consumption in a Cloud Data center will be shown.  
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I. INTRODUCTION 

Cloud computing has progressed from different recent 

advancements in Grid computing, virtualization, utility 

computing, web computing and other associated 

technologies. It provides three level of services, that is to say 

Platform as a Service (PaaS), Infrastructure as a Service 

(IaaS) and Software as a Service (SaaS). In this paper, we 

focus on CPU intensive computing at IaaS level in Cloud 

Data centers.  

Virtual machine reservation services is provided by Cloud 

computing providers (such as Amazon) with specified 

computing units.  

For that purpose, in advance, customers solicit some units of 

computing resources to use for a period of time in the future. 

Providers will have enough time to schedule. The resources 

in this paper comprise: 

 

a) Physical Machines (PMs): Hardware-based devices 

which contain multiple virtual machines. Each 

Physical Machine can be composed by a CPU, hard 

drives, network cards, memory, and etc. 

b) Virtual Machine (VMs): Virtual computing 

platforms on Physical Machines (PM) represented as 

an emulation of a computer system obtained by 

using softwares of virtualization.  Each Virtual 

Machine has elements of virtual CPUs, storage, 

memory, network cards, and other components.  

 

The process and architecture of Virtual Machine reservation 

scheduler are provided in Figure 1, by making reference to 

Amazon Elastic Computer Cloud (EC2).  

As mentioned in the diagram, the important processes of 

resource scheduling are: 

1. User request reservation: the user commence to 

do a reservation by using the Internet. 

2. Management Scheduling: Scheduler Center take 

decisions by considering the operational 

characteristics of the request (quality and quantity 

requirements) and the user’s identity. The request is 

given to a data center, then the data center 

management program submits it to the Scheduler 

Center, at the end,  the Scheduler Center assign the 

request based on algorithms scheduling; 

3. Feedback to users: Algorithms of scheduling 

provide resources which are available to the user. 

4. Scheduling execution: Scheduling results (such as 

deploying steps) are sent to the next stage; 

5. Updating and optimization: The scheduler 

updates information of a resource, optimizes 

resources in the data center according to the 

optimizing objective functions. 

mailto:sebagenzij@yahoo.fr
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Figure 1. Architecture of Virtual Machine reservation in a Cloud data center 

 

In the reservation services process, customers receive list of 

charges according to the energy of the computing resources 

as well as the total amount of time computing. The scheduler 

executes periodically for a fixed period of time depending on 

workloads in realistic scenarios.  

 

From the provider’s side, the total energy cost of computing 

resources is related to the total powered-on time of all 

computing resources. Because Cloud data centers utilize 

very large amounts of energy, its cost (electricity price) is 

regularly increasing. 

 

So preference to reduce total power-on time to save energy 

costs. How to model this problem and solve it efficiently is 

not well studied in the literature. In practice, some simple 

algorithms like Round Robin and First-Fit are used by 

Elastic Computer Cloud (Amazon EC2) and VMWare 

(VMWare) [6] [8] [9].  

 

To measure the performance of different approximate 

algorithms, the approximation ratio, defined as the ratio of 

the result obtained by proposed algorithm over the optimal 

result, is widely used [18] [19].  

 

Too many researchers are near of the present research and 

their papers discuss this issue under general parallel machine 

scheduling context, and provide a comprehensive review for 

the fixed interval scheduling problem [7] [12 [14].  

 

The Virtual Machines problem of reservations can be 

formulated as follows: There are m deterministic 

reservations submitted to the scheduler in advance to be 

scheduled offline on multiple physical machines (PMs) with 

bounded capacities. Every Virtual Machine reservation is 

identified by a start-time, an end-time, and a capacity 

demand. The objective is to schedule all reservations non-

preemptively, subjecting to constraints of Physical Machine 

capacities and running time interval spans, such that the total 

energy consumption of all PMs is reduced. 

 

This problem is an NP-hard.  The problem has been 

considered in optical networks and demonstrated that the 

problem is NP-hard already for g = 2, where g is the total 

capacity of a physical machine in terms of CPU [2] [4].  

 

In this paper, the assumption that the total CPU capacity of a 

Physical Machine, g, is measured in abstract units such as 

EC2 Compute Unit (ECU).  

 

Researchers was considering the same scheduling problem 

in optical network where jobs are given as interval spans 

with unit demand [3] [5]. 

 For this kind of the problem a 4-approximation algorithm 

called FFD (First Fit Decreasing) for general inputs and 

better bounds for some subclasses of inputs are provided. 

The First Fit Decreasing algorithm sorts all jobs’ process 

time in non-increasing order and allocates the job in that 

order to the first machine which can host [16] [17] [20]. 

 

Khandekar et al. (2010) was proposing a 5-approximation 

algorithm for this scheduling problem. He tries to separate 

all jobs into a wide and a narrow types by their demands 

when 𝛼 = 0.25, which is the parameter of demand of narrow 

jobs which are occupying the portion of the total capacity of 

a machine.  

 

Tian et al. also was  proposing a 3-approximation algorithm 

called MFFDE for general offline parallel machine 
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scheduling with unit demand and the MFFDE algorithm 

applies FFD with earliest start-time first. In this work, we 

aim to propose better methods for the optimal energy-

efficient scheduling with concentration on VM reservations. 

In this paper, the Virtual Machine requests and jobs are used 

interchangeably. 

 

 The important contributions of this paper include:  

1. Proposing an approach to reduce total energy 

consumption of virtual machine reservations by 

minimizing total energy consumption of all 

Physical Machines. 

2. Deducing a theoretical lower bound with limited 

number of Virtual Machine migrations. 

3. Proposing an algorithm, which is good than the 

best-known 3-approximation algorithm. 

4. Approving theoretical results by intensive 

simulation of trace-driven and synthetically 

generated data. 

The organization of the paper is as follows: Background is 

provided in Section II. Section III presents problem 

statements. Section IV presents the longest loaded Interval 

First algorithm. Section V considers Performance 

evaluation. Conclusion is conducted in Section VI. Finally 

future work is discussed in section VII. 

II. BACKGROUND 

For energy-efficient scheduling, the objective is to meet all 

reservation requirements with the minimum total energy 

consumption based on the following assumptions and 

definitions. 

1. All data is given to the scheduler since we consider 

offline scheduling unless otherwise specified, the 

time is discrete in slotted window format. We 

partition the total time period [0, T] into slots of 

equal length (  ) in discrete time, thus the total 

number of slots is     
 

  
 (always making it a 

positive integer). The starting-time of the system is 

set as     . Then the interval of a reservation 

request i can be represented in slot format as a tuple 

with the following parameters: [StartTime, 

EndTime, RequestedCapacity] = [  ,     ]. Start-

time    and end-time    are non-negative integers 

[10] [11]. 

2. There are no precedence constraints for all jobs 

other than those implied by the start-time and end-

time. Preemption is not considered.  
 

 

 

Table 1: 8 types of virtual machines (VMs) in Amazon EC2

3. The Total Power-on Time: For any instance I and 

capacity parameter     , let        denote the 

minimum total power-on time of all Physical 

Machines. For Virtual Machine reservations, the 

power-on time here means the power-on time of 

all Physical Machines, only including busy time, 

and the idle time is not counted. The Physical 

Machine will be turned off or put into sleep mode 

so that the energy consumption during idle time 

can be ignored. 

4. The Workload: for any job j, denote its process 

time as             , its workload is denoted by 

    , which is its capacity demand    multiplies 

its process time   , i.e,            . Then the 

total workload of all jobs J  is        
∑      

   . 

5. The Approximation Ratio: an offline 

deterministic algorithm is said to be C- 

approximation for the objective of minimizing the 

total energy consumption if its total energy 

consumption is at most C times that of an 

optimum solution. 

6. Strongly divisible capacity of jobs and machines: 

the capacity of all jobs form a divisible sequence, 

i.e., the sequence of distinct capacities     
                        taken on by jobs 

(the number of jobs of each capacity is arbitrary) 
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is such that for all       ,      exactly divides 

   . 

7. Let us consider that a list L of items has divisible 

item capacity if the capacities of the items in L 

form a divisible sequence. Also, if L is the list of 

items and g is the total capacity of a machine, we 

say that the pair       is weakly divisible if L has 

divisible item capacities and strongly divisible if 

in addition the largest item capacity    in L 

exactly divides the capacity g (Coffman et al., 

1987). 

 

In the following sections, unless otherwise specified, the 

strongly divisible capacity case is considered. Actually, in 

strongly divisible capacity configuration the CPU capacity 

of a Virtual Machine represents the total capacity of (CPU, 

memory, storage) in a Physical Machine. For Example, 

Virtual Machine type 1-1: 

 

1. Shown in Table 1 has memory of         , CPU of 

1 unit,                     , and 

                       as shown in Table 2 has 

memory of      , CPU of         , storage of  

       . However, VM type 1-1 (1) has CPU 
 

  
, 

memory 
 

  
 (=

     

  
, storage 

 

  
 (=

      

    
) of the total 

CPU, memory and storage capacity of type-1 PM, 

respectively. In this strongly divisible capacity case 

we can use the CPU capacity of a Virtual Machine 

to represent the total capacity of a Virtual Machine, 

especially the energy consumption model in 

Equation (5)–(11) is proportional to the CPU 

utilization [1] [13].

 

Table 2: 3 types of physical machines for strongly divisible capacity configuration

Note that the assumption of strongly divisible capacity is a 

valid assumption and is used by commercial cloud service 

providers such as Amazon where the CPU capacity of 

different VM instances are often evenly divisible (see Tables 

1 and 2). 

 

III. PROBLEM STATEMENT 

 

The problem has the following formulation: the input is a set 

of n jobs (VM requests)               . Each job    is 

associated with an interval         in which it should be 

processed, where    is the start-time and    the end-time, 

both in discrete time.  

It is possible to set             as the process time of 

      . For simplicity, we concentrate on CPU-intensive 

applications and consider CPU-related energy-consumption 

only.  

The capacity parameter       is the maximal CPU capacity 

a single Physical Machine provides. Every job requests a 

capacity   , which is a natural number between 1 and g. The 

power-on time of PMi is denoted by its working time 

interval length   .  
The optimizing objective is to assign the jobs to PMs such 

that the total energy consumption of all PMs is minimized. 

Note that the number         of Physical Machines to be 

used is part of the output of the algorithm and takes integer 

value. 

 
Imagine for any scheduler S, the PMs are numbered as 

          we denote by Ji the set of jobs assigned to     
with the scheduler S.  

The total period of     is the length of its busy intervals, 

i.e.,                for all       where           is the 

span of the set of job intervals scheduled on    . 
 

Formally, assuming there are m Physical Machines in a 

Cloud Data center,    is the energy consumption of     
during test, the problem can be restated as an optimization 

problem: 

 

 

Minimize  ∑    
               (1) 

        

Subject to   (a)  ∀ slot s,  ∑             

 

                    (b)  ∀ji, 0 ≤ si < ei 

 

Where (a) means that the sum of the capacity of all Virtual 

Machines       on a Physical Machine       cannot be 
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more than the available capacity a PM can offer; (b) means 

that each request has a fixed start-time    and end-time   , 

i.e., the processing interval is fixed. 
 

IV. THE LONGEST LOADED INTERVAL FIRST 

ALGORITHM 

In this part, a 2-approximation algorithm called Longest 

Loaded Interval First (LLIF) is introduced. The LLIF 

algorithm schedules the requests from the longest loaded 

slots first. The LLIF algorithm is described in Algorithm 3.1. 

 

LLIF algorithm is same to Algorithm 2.1 except that there is 

no job migration in LLIF algorithm. LLIF firstly finds the 

longest continuous interval with the same load, denoted as 

[     ], and separates jobs in [z1, z2] as end-time first and 

start-time first groups, considers the longest job firstly in the 

same group; then it decides if the theoretical maximum load 

(number of PMs) is reached in [     ], if not, it allocates the 

job to the first available PM or opens a new PM when needs, 

else the allocation is migrated to an existing PM which still 

can host in [      ]. LLIF updates the load of every Physical 

Machine and continues this process until all jobs are 

allocated. 

The case that     as shown in (Flammini et al., 2010), 

called Unit Demand Case, is a special case of            

(let us call it General Demand Case).  

In order for minimizing total power-on time, Unit Demand 

Case represents the worst case scenario for LLIF. 

Proof. The proof is demonstrate here to understanding 

better. Take a Consideration of the General Demand Case, 

i.e.,           . The adversary generates the following 

case: there are    jobs in g groups, each group of jobs have 

the same start-time at si = 0, demand di (for            and    

∑   
 
      , each has end-time at       

 

      where T is 

the time length of consideration, k is natural number, and  

 

If              , then  

Set              ;  

else j = g.  

 

In this case, for the optimal solution, one can allocate all the 

longest requests to a machine (M1) for a power-on time of 

dgT, then allocates all the second longest requests to another 

machine (M2) for a power-on time of  
    

 
 , …., … and 

finally allocates all the shortest requests to machine (Mg ) 

with a power-on time of 
   

      

 

The total power-on time of optimal solution therefore is 

formulated as follows:  

 

       ∑
   

    

 
     ∑

  

    

 
           (2) 

      

We consider the worst case (the upper bound). For any 

offline algorithm, let us call ALGX, the upper bound is to 

make 
    

   
 the largest while keeping other conditions 

unchanged. Cleary, if OPT has the smallest value, equation 

(2) will have the largest value. When g, k and T is given, 

equation (2) will have smallest value if di has the smallest 

value, i.e 

      . It has the meaning that Unit Demand Case 

represents the worst-case scenario and the Proof is 

completed. 

 
In the following section, the worst case (unit demand case) is 

considered. 

 

The approximation ratio of the proposed LLIF algorithm for 

       problem has an upper bound 2. 

 

Let assume that all the jobs in subset Ji are assigned to 

machine  . For that a set, the total power-on time of the 

assignment is exactly its span. The consideration of the 

upper bound for the worst case is taken. 

 

Ideally          equals to the optimal solution by the 

definition of interval span since it behaves as Theorem 1 

suggests, allocating the minimum number of machines to 

each time slot. But in some situation, this is not generally 

true.  

The construction of an adversary2 for LLIF algorithm and 

provide Proof in the following: The adversary as shown in 

Fig. 3, can submit        jobs forming a clique (this is the 

case that all job intervals intersect each other, k is a positive 

integer, all started and ended at different time with different 

span lengths, and sorted in non-decreasing order of their 

start-time [15] [21].  

 

The total power-on time of the optimal solution is 

determined by the span length of the longest job with span 

             job with span                  job,…, 

and the shortest job (thinking that the shortest job has the 

longest loaded interval comparing to all jobs in this case), 

this is to consider allocation from the top to the bottom. 

 

LLIF treats the longest loaded interval first, its total power-

on time is determined by the             job     
         job,…, the 2-nd longest job with span   , and 

the longest job with span    (one only job stay for a single 

machine), this is to allocate from the bottom to the top.  

 
       

      
 = 

            

               
 

 

 
  

  
  

  
  
  

  
             

  

   (3) 
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A. Applications to energy efficiency of virtual machine 

reservations. 

In this section, we introduce how our results are applied to 

Virtual Machine reservations in a Cloud Data center. We 

consider that virtual machine reservation for CPU-intensive 

applications in Cloud Data centers where CPU in Physical 

Machines are major resources [1] [3].  

Each Virtual Machine has a start-time   , end-time   , CPU 

capacity demand   . The CPU capacity demand (  ) of a 

Virtual Machine is a natural number between 1 and the total 

CPU capacity (g) of a Physical Machine.  

These features are also reflected in Amazon    . Our 

objective here is to minimize total energy consumption of all 

Physical Machines.  

This is exactly the same as the        problem. So we can 

apply the results of the        problem to the energy-

efficiency of Virtual Machine reservations. The metrics for 

energy consumption will be presented in the following [5] 

[7]. 

 

B.  The power consumption model of a server 

 

In the literature, there are many research which indicates that 

the overall load of the system is typically proportional to the 

utilization of the CPU. This is of course true for the 

computing of CPU-intensive where there is domination of 

utilization of CPU.  

The following power model which is linear, of a server is 

much used in literature [20] [22]. 

 

                      

 

                     (4) 

       

Where      is the power consumed when the server is fully 

utilized,      is the power consumed when the server is idle; 

k is the power fraction consumed by the idle server (studies 

show that on average it is about 0.7); and U is the utilization 

of the CPU.  

 

In a real situation, the CPU utilization may change over time 

due to the workload variability.  

 

 

 

 

 

 
 

Algorithm 1: OPT-Min Migration 
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Thus, the utilization of the CPU is a function of time and is 

represented as      . Therefore, the total energy 

consumption (  ) by a physical machine, can be defined as 

an integral of the power consumption function during 

[     ]: 

 

   ∫            
  

  
   (5) 

When the average utilization is adopted, we have       
 , then 

 

                

 

                            (6) 

      
Where    is the power-on time of machine    , the first 

term       , is the energy consumed by power-on time of 

   , denoted as             
; the second term,       

          is the energy increase by hosting VMs on it. 

Assuming that a     increases the total utilization of      

from U to   and set          , and      works in full 

utilization in the worst case. Defining      as the energy 

increase after running     on     from time    to   , we 

obtain that: 

 
                                                    

 

             
            

 

                          (7) 

 

For VM reservations, we can further obtain that the total 

energy consumption of PMi, the sum of its idle energy 

consumption (    
) and the total energy increase by hosting 

all VMs allocated to it. 

 

         
 ∑    

 
    

 

                   ∑       
 
    (8) 

 

 

Where      is the utilization increase of     with the 

allocation of    , and      is the time length (duration) of 

    running on    . 

 

C.  The total energy consumption of a Cloud Data center 

(CDC) 

 

The total energy consumption of a Cloud Data center (CDC) 

is calculated as follows: 

 

     ∑   
 
       (9) 

 

 

 

 

 

 

 

 

 
Algorithm 2: Longest Loaded Interval First (LLIF)
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It is the sum of energy consumed by all Physical Machines 

in a CDC. Note that the energy consumption of all Virtual 

Machines on all Physical Machines is included.  

In this research, the objective is to minimize total energy 

consumption by considering time and capacity constraints. 

The following theorem establishes the relationship between 

total energy consumption, the total power-on time and the 

total workload of all PMs in a CDC. 

 

For a given set of Virtual Machine reservations, the total 

energy consumption of all Physical Machines is determined 

by the total power-on time and the workload of all Physical 

Machines. 

 

Set 𝛼                             

 

       
 ∑    

 
     (From (6),   (7)) (10) 

 

     ∑   

 

   
 

 

 

 ∑  𝛼        
 
     (From (7), (8)) 

 

 𝛼 ∑  

 

   

  ∑ ∑       
       

 

   

 

 

          (11) 

 

Where    ∑   
 
    is the total busy (power-on) time of all 

PMs, L is total workload of all VMs (which is fixed once the 

set of VM requests is given). From equation (11), we can see 

that the total energy consumption of all Physical Machines is 

determined by the total power-on time of all Physical 

Machines and the total workload caused by hosting Virtual 

Machines on all Physical Machines.  

This completes the Proof. From Theorem 1-5, we also can 

induce the following observations, which are applicable to 

energy efficiency of Virtual Machine reservations. 

 

1. It is possible to have the minimum total energy 

consumption (i.e., the optimum result) for a given 

set of Virtual Machine reservations in a Cloud Data 

center by applying Algorithm 2.1, OPT-MIN-

Migration,. 

2. Applying LLIF algorithm for Virtual Machine 

reservations, the approximation ratio has upper 

bound 2 regarding the total energy consumption 

comparing with the optimum solution. 

 

Notice that the upper bound 2 is obtained for the worst case. 

As for average cases, we did intensive tests under different 

scenarios and find that LLIF algorithm is near optimal. 

 

3. The proposed algorithm LLIF obtains optimal 

results, for one-sided clique case where all jobs 

have the same start-time or end-time as discussed 

[17] [19]. 

 

Since LLIF considers the longest loaded interval first, in this 

case it is to allocate the longest group of jobs to the first PM, 

and the  second longest group jobs to the second PM, and 

so on. The same as the optimum solution does. 

 

V. PERFORMANCE EVALUATION 

 

A. Settings 

 

Table 1 shows eight types of Virtual Machines from 

Amazon EC2 online information, where one CPU unit 

equals to       CPU of Intel 2007 processors. Amazon EC2 

does not give any information on its hardware configuration.  

However, we can form three types of different Physical 

Machines based on compute units. In a real Cloud Data 

center, for Example, a Physical Machine with 2 × 68.4 GB 

memory, 16 cores × 3.25 units, 2 × 1690 GB storage can be 

provided. 

 The configuration of Virtual Machines and Physical 

Machines are shown in Tables 1 and 2. Table 3 also provides 

different      and      for different type of Physical 

Machines, which are obtained from real power tests. For 

comparison, we assume that all Virtual Machines occupy all 

their requested capacity (the worst case). In this case, 

 

 

 
Table 3:  3types of Physical Machine with Energy Consumption Metrics. 
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Eight types of Virtual Machines are shown in Table 1. 

 

B. Algorithms 

 

We considered four algorithms in this paper: 

 

 First-Fit Decreasing (FFD): This algorithm 

introduced in (Beloglazov et al., 2012), sorts, in 

non-increasing order of the process time all 

requests and then allocates the request to the first 

available Physical Machine. It has computational 

complexity of            where n is the total 

number of requests. 

 Earliest Start-Time First (EST): This algorithm 

sorts all requests in non-increasing order of their 

start-time first and then allocates the request to the 

first available Physical Machine. It has 

computational complexity of            where n is 

the total number of requests. 

 Longest Load Interval First (LLIF): This is the 

proposed algorithm. The important idea is to 

repeatedly consider a group of the longest load 

interval span first in all slots. It has computational 

complexity of            where n is the total 

number of requests. 

 

 Optimal solution (OPT): This represents the lower 

bound, obtained by Algorithm 2.1. The 

computational complexity of finding this lower 

bound is      where k is the total number of slots 

considered, and can be ignored. 

 

 
 

Figure 2: Total power-on time (minutes) of all PMs. 

 

 

 
Figure 3: Comparison of total running time (in micro seconds) when 

varying the maximum duration of VMs. 

 

 
 

Figure 4: comparison of total energy consumption (in KWh) when 

varying the number of VMs. 

 

 

 
 
Figure 5: Comparison of total power-on time (in minutes) when varying 

the number of VMs. 
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VI. CONCLUSIONS 

 

Eight types of Virtual Machines and three types of 

Physical Machines which are heterogeneous are 

considered. The simulation with enough Physical 

Machines has been performed so that all requests of 

Virtual Machine can be allocated without any rejection. 

Fig. 7 and Fig. 8 is presently showing the comparison of 

the total energy consumption and total power-on time (in 

minutes) respectively when varying the number of Virtual 

Machines using Parallel Workloads Archive data. 

In this comparison, the total number of Virtual Machines is 

varying from 1000 to 7000 while other settings are the 

same. 

The maximum is 20 and minimum number of processors is 

1 in the requests, respectively. The average of processors is 

12. It can be seen, regarding total energy consumption in 

all cases that EST ≥ FFD > LLIF > OPT. Results of LLIF 

are less optimal (OPT) solution.  

It can be seen that the total running time of LLIF is slightly 

larger than both EST and FFD, while EST and FFD have 

running time close to each other.  

This is because LLIF passes much time on finding, 

recursively, the longest load interval as shown in 

Algorithm 3.1. 

 Note that the number of Virtual Machine migrations in 

OPT is 12, 23, 34, 87, 158 when the number of total 

Virtual Machines varies from 1000 to 7000, respectively.  

Results of LLIF is about   –    more energy-saving 

than FFD on the average and MFFDE are about   –    

more energy-saving than FFD on the average, this means 

LLIF is a few percentages more energy-saving than 

MFFDE. 

 

VII. FUTURE WORK  

 
In this present paper, the efficiency of energy scheduling 

method for virtual machine reservations is suggested. The 

suggestion of a solution which is optimal with a number of 

job migrations which is minimal.  

Then, the best-known bound 3-approximation has been 

ameliorated to 2-approximation by initiating Longest 

Loaded Interval First algorithm. Greatest of results are 

appropriate to only a single Cloud Data center as shown in 

Fig. 1. As for combined systems, results are willingly 

applicable by considering all machines in combined data 

centers. 

Few more open research issues for the problem are there: 

 Finding best above-optimal solution and providing 

proofs which are theoretical for the approximation 

algorithms. Although the problem is NP-complete in 

general, the presumption is above near-optimal solution 

for it. As for approximation algorithms, the 

approximation ratio comparing to optimal solution can 

be provided. 

 Considering the energy consumption during migration 

transitions periods and Virtual Machine migration 

farther. Applying limited number of Virtual Machine 

migrations, it is possible to minimize the total energy 

consumption. However, often, migrating Virtual 

Machines can also cause vibration of network so that 

only limited number of Virtual Machine migrations can 

be taken. By considering offline scheduling, it is 

possible to take a number of migrations which is 

limited so that the total energy consumption can be 

minimized. Further, investigation will be done and also 

consideration of energy consumption during migration 

will be highlighted. 

 Combining load-balancing and energy-efficiency 

together. Only considering energy-efficiency, for real 

application, might not be sufficient because it may 

cause problems like unbalance load for every Physical 

Machine. So the combination of load-balancing and 

energy efficiency can provide an integrated solution. 

By considering these issues, the research can be conducted 

to further improvement of energy efficiency. 
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