

 © 2013, IJCSE All Rights Reserved 38

International Journal of Scientific Research in Computer Science and Engineering

Research Paper

Volume-1, Issue-1, Jan- Feb-2013

Available online at www.isroset.org

Test Case Generation Using Discrete Particle Swarm Optimization Algorithm

 Chandraprakash Patidar

Department of Information Technology, Institute of Engineering & Technology DAVV Indore, M.P. - INDIA

 chandraprakash_patidar@yahoo.co.in

Available online at www.isroset.org

Received: 04 Jan 2013 Revised: 16 Jan 2013 Accepted: 15 Feb 2013 Published: 28 Feb 2013

Abstract— Today's era is of software. To deliver the best software to the customer it is very important to test the software

before delivery. So the software testing becomes an independent field of software engineering. The crucial section of software

testing is to generate the test cases. In this paper I proposed a model which is based on sequence diagram. That generate more

dynamic test cases because of sequence diagram. Whereas a testing which is based on use case diagram is generates only static

test cases. In this paper information will be extracted from sequence diagram. For this first of all sequecne diagram is created on

the given problem. After this dependency table will be generated. Dependency graph will be generated from dependency table.

At last test cases will be generated from dependency graph. These test cases will be optimized by Discrete Particle Swarm

Intelligence Algorithm.

Keywords—Sequence diagram, Test Case Discrete Particle Swarm Optimization, Visual Paradigm 12.0.

I. INTRODUCTION

Sequence diagram is typical control flow diagram. It

concentrates on control flow through multiple interacting

instances. For testing, the sequence diagram may be

represented as abstract control flow graph that span multiple

entities. With that respect we can apply all typical

traditional control flow graph based test coverage criteria.

Since UML diagrams are more abstract than traditional

control flow graphs, the test targets may be more abstract.

Binder identifies some typical problems that may be

discovered through sequence diagram based testing [1]:

• Incorrect or missing output

• Action missing on external interface

• Missing function/feature (interface) in a participating

object

• Correct message passed to the wrong object

• Incorrect message passed to the right object

• Message sent to destroyed object

• Correct exception raised, but caught by the wrong object

• Incorrect exception raised to the right object

Discrete Particle Swarm Optimization Algorithm [2]:

Initialize swarm P t=0;

Initialize velocity vk
t
 and position Pk

t

Initialize parameters

Evaluate particles

Find the local best
e
Pk

t
 and global best Gb

t

Do

{

for(K=1, N)

Update Velocity vk
t+1

;

Update Position Pk
t+1

;

Evaluate all Particles;

Update
e
Pk

t+1
and G

t+1
, (K=1, N);

t→t+1;

}(while t<tmax)

The Particle Velocity and position are continuously

updated using equation 1 and 2.

vk
t+1

 = C1U1 vk
t
 + C2U2 rand() (

e
Pk

t+1
 - Pk

t+1
) + C3U3

rand() (Gk - Pk
t+1

) --------- (1)

Pk
t+1

= Pk
t
+ vk

t
 --------- (2)

Where C1, C2 and C3 are acceleration constants. The

acceleration constants C1, C2 and C3 in equation 2 guide

every particle toward local best and the global best solution

during the search process. Low acceleration value results in

walking far from the target, namely local best and the global

best. High value results in premature convergence of the

search process.

The present study is organized as following: Section 2

reviews the activities for software testing by Sequence

diagram and Discrete Particle Swarm Optimization

algorithm. The first part of section 3 explains completely

the concepts and algorithm stages for full explanations and

also deals with the explained approach concepts, analyzes

the TC generation method by this approach and an example

for better understanding is evaluated. Also the last part in

section 3 compares the results with test case generation

ISSN 2320-7639

ISROSET - International Journal of Scientific Research in Computer Science and Engineering, Volume-1, Issue-1, 2013

© 2013, IJSRCSE All Rights Reserved 39

using Genetic algorithm. Finally the last section provides

the conclusion.

II. RELATED WORK

The literature survey is done in order to collect information

about the basic system and the various algorithms and

technologies that can be used for the further references

while developing the project. In this chapter we present the

research papers related to the Model i.e. sequence diagram

based testing. Emanuela G. Cartaxo, Francisco G. O. Neto

and Patrίcia D. L. Machado [3] presented a systematic

procedure based on model based testing technique in which

test cases are generated from UML Sequence diagrams

translated into Labeled Transition Systems (LTSs). Labeled

transition systems provide a global indivisible description of

the set of all possible behaviors of the system; a path on the

LTS can be taken as test sequence. Therefore, Labeled

Transition Systems are highly testable models. In figure 2.1,

the elements that are present in a Labeled Transition System

are shown: (a) initial state (Figure 2.1(a)) that represents an

initial state of the system; (b) labeled transition (Figure

2.1(b)) that represents an action that occurs and change the

state of the system; and (c) state (Figure 2.1(c)) that

represents a state of the system. An Labeled Transition

Systems is a 4-tuple S = (Q, A, T, q0), where

• Q is finite, nonempty set of states;

• A is a finite, nonempty set of labels (denoting actions);

• T, the transition relation, is a subset of Q×A×Q;

• q0 is the initial state.

 a

 (a) (b) (c)

Figure 1: Labeled Transition System Elements.

In this paper Redundancy in Test Case Generation which

will be removed through my approach.

S. Shanmuga Priya and P. D. Sheba Kezia Malarchelvi [4]

presented a model based testing approach in which test

paths are generated by traversing the sequence dependency

graph using depth first search technique; which is created

using the information extracted from UML Sequence

diagrams in the form of sequence dependency table using

depth first search.
Symbol Activity Name Sequence

Number

Dependency Input Expected Output

A Login 1 - Patient ID

and Password

Valid Patient ID

and Password

B Verify 2 A

-

Validate Patient ID

and

Password/Invalid

Patient ID or

Password

C Result 3 B

-

Take to

the next

screen on

entering

valid

Patient ID

and

Password
End on entering

invalid patient ID or

password
D Patient Details 4 C Patient enters Patient

Name, Age, Gender,

Last Consulted Date,

Symptoms, Doctor

Name

Checks for Details

(Valid)
Invalid Details

(End)

E Request 5 D

-

Proceeds if doctor is

available
End if doctor is not

available
F Refer Patient

History

6 E
-

Checks for Details

G Retrieve Data 7 F

-

Retrieve and

Display Patient

History
H Diagnosis/

Suggestions

8 G

-

Doctor make

diagnosis and

prescribe medicine
Suggest to take

some other tests for

further diagnosis
I Display Result 9 H

-

Patient takes

prescription/

Suggested Medical

Test
J End - C, D, E, I - -

Table 1: Sequence Dependency Table

Figure 2: Generated Test Paths using Depth First Search.

In this paper Manual Test Case generation with test paths

which will be automated in our approach.

Bandyopadhyay, A. and Ghosh, S. presented in [5] a novel

testing approach using sequence models to extract message

paths and than using state machines for generating multiple

execution paths from a message path for analyzing the

effect of messages on state transitions of the system [3].

Here also Manual Test Cases are generated with test paths.

ISROSET - International Journal of Scientific Research in Computer Science and Engineering, Volume-1, Issue-1, 2013

© 2013, IJSRCSE All Rights Reserved 40

Vivek Kumar and Aarti Gautam Dinker presented in [6] a

model based testing approach using UML use case diagram

for Web Application including ordered profile use case

diagrams called Use Case Transition Models. In their

approach testing strategy derives test cases using full

predicate coverage criteria. In this paper Static Test Cases

are Generated and which are made more dynamic in our

approach.

Manpreet Kaur and Rupinder Singh presented in [7] the

conditional predicates linked with the messages in Sequence

Diagram and created a Slice with each conditional Predicate

and than with respect to each slice test cases are generated

manually for satisfying slice condition. Here the Slicing

technique is used to disintegrate the structure of the system

model into sub-models without affecting their original

structure and functionality. In this paper also Test Cases are

generated manually with respect to each constructed slice

by satisfying slice condition, these are automated in our

approach.

Ashlata Nayak and Debasis Samanta presented a two phase

approach for automating the test Scenario Generation

Process using Sequence Diagram. A Control flow analysis

of a sequence diagram is presented in the first phase and

generates as outcome a directed graph representation i.e.

Scenario Graph and this graph will be the input for second

phase and will generate test scenarios as the final output

[8].In this paper Test Scenarios are not optimized and will

be optimized in our approach.

Swain et al. Presented test suite generation by constructing

Use Case Dependency Graph from Use Case Diagram and

Concurrent Control flow graph from corresponding

Sequence Diagram. And this test suite aims to cover

different faults associated with Object Oriented Systems for

which Use Case Dependencies and Inter and Intra-Sequence

Diagrams are considered [9].

Sven Sieverding, Christian Ellen and Peter Battram

Presented an approach to analyze sequence diagram based

test cases. This is achieved by using test case sequence

diagram and for translating this test case sequence diagram

to Timed Arc Petri Nets transition rules are presented.

These timed arc Petri nets can be merged into one single

Petri net. By these merged Petri nets they analyzed

consistency of test cases in terms of ordering and timing

behavior [10].

A. V. K. Shanthi and G. Mohan Kumar presented optimized

test case generation by UML sequence diagram using

genetic algorithm [11].

Clémentine Nebut, Frank Fleurey, Yves Le Traon, and

Jean-Marc Jézéquel [12] presented the test case generation

using Use Case, Use Case contracts and Use Case

Scenarios. They also show results of their approach on three

case studies named Automated Teller Machine, A FTP

Server and The Sever of Virtual Meetings. Which can be

refined using sequence diagram which is a more dynamic

representation than Use case diagram and they also

mentioned that more efficient criteria for test generation and

test efficiency measures should be developed and which is

done by our approach and so this research gap overcome in

our project by sequence diagram and optimal test case

generation algorithm Discrete Particle Swarm Optimization.

Azam Andalib and Seyed Morteza [13] presented the

algorithm which optimizes the test cases by Discrete

Particle Swarm Optimization Algorithm. Here test cases are

generated from code which can be generated early in the

software development life cycle using Sequence Diagram.

III. OBJECTIVE

The objective of this project is to resolve the problems with

other existing software testing, test case generation

algorithms. The objective of this paper using Sequence

Diagram Based Testing with discrete particle swarm

optimization algorithm approach is as follows:

1. Automated Test Case Generation: This project focuses on

automated test case generation from UML Sequence

Diagram using Discrete Particle Swarm Optimization

Algorithm. The proposed approach introduces an

algorithm that automatically creates a dependency table

then it generates a dependency graph from which test

cases can be easily generated and then those test cases can

be optimized using discrete particle swarm optimization

algorithm.

2. Dynamic Test Case Generation: This Paper focuses on

generating dynamic test cases by using sequence

diagram as base element for generating test cases. This is

possible by proposed approach because using sequence

diagram dynamic actions like interaction among objects

can be taken into consideration when generating test

cases.

3. Optimized Test Case Generation: In this paper Test

cases are optimized using discrete particle swarm

optimization algorithm. Which is applied on the test

cases generated by dependency graph (control flow

graph) generated by extracted information from

sequence diagram in the .xml file.

IV. PROPOSED APPROACH

Firstly information is extracted from sequence diagram

using visual paradigm tool that will export .xml file from

.mdl file than dependency table will be generated based on

extracted information. Now from dependency table control

flow graph will be generated and from control flow graph

test paths can be identified. On these test paths Discrete

Particle Swarm Optimization Algorithm will be applied for

ISROSET - International Journal of Scientific Research in Computer Science and Engineering, Volume-1, Issue-1, 2013

© 2013, IJSRCSE All Rights Reserved 41

test case generation. The set of optimized test case

sequences are now applied on the source code (through any

automated test suit execution program) and the number of

faults found are analyzed against the existing algorithms in

the literature.

Apply Discrete Particle

Swarm Optimization Algorithm

Figure 3: Architecture of the System.

We are taking ATM case study as example to clear our

approach. Firstly in our approach we have to draw sequence

diagram for our example than we have to export the

Sequence diagram into xml file for extracting the

information which will be helpful in constructing sequence

dependency table. And from this sequence dependency

table we will be able to draw the control flow graph and

from that control flow graph we will be able to generate test

cases. Following this the test cases can be optimized by

using Discrete Particle Swarm Optimization Algorithm.

Different diagrams and tables as per procedure defined in

our approach are as follows that include Sequence diagram,

Sequence diagram to xml exported file using visual

paradigm 12.0 tool, Sequence dependency table and control

flow graph:

Figure 4: Sequence Diagram for ATM Case study.

Symb

ol

Activity Name Sequence

Number

Dependency Input Expected Output

A Insert Card 1

B Validate (Card) 2 A Card True

(enter the pin)
False (end)

C Enter Pin 3 B Pin Pin
D Pin 4 C User types the

pin

Receives the pin and

send it to the server
E Verify (pin) 5 D Pin True (enter amount)

False (end)
F Enter amount 6 E Amount Amount
G Amount 7 F User types the

amount

Receives the amount

and send it to the server
H Check Balance

(amount)

8 G Amount True (take cash)
False (end)

I Take cash 9 H Cash End
J End 10 B, E, H, I

Table 2: Sequence Dependency Table

Figure 6: Control Flow Graph

According to McCabe theory as shown in [14] four test

cases are possible from above control flow graph. All

Possible Test Paths are as follows:

P1: 1-2-10

P2: 1-2-3-4-5-10

P3: 1-2-3-4-5-6-7-8-10

P4: 1-2-3-4-5-6-7-8-9-10

Binary and Decimal Value of Pathways

P1: F = (0001): 1

P2: F = (0010): 2

P3: F = (0011): 3

1

2

3

4

5

6

8

7

10

9

Model

 (Sequence Diagram)
Extracting the

information from

Sequence Diagram

Optimal Test Case

Generation Construction of

Dependency Table

ISROSET - International Journal of Scientific Research in Computer Science and Engineering, Volume-1, Issue-1, 2013

© 2013, IJSRCSE All Rights Reserved 42

P4: F = (0100): 4

Ideal Value of fitness function is

F1 ideal = (0100): 4

V. RESULTS

As we know from [12] that the path with maximum fitness

value will be the optimum path; we can conclude by above

shown paths and fitness value that the path 4 with fitness

value 4 will be the optimum path and should be generated

when we test the data given by user on the System under

test. As the purpose of performing this algorithm to achieve

maximum fitness value, the aim of the particles is achieving

fitness value 4, it can be said the path 4 is covered. By

achieving such testing data 100% of path and 75% of the

program regions are covered as in the case of considered

case study.

Comparison of the Proposed Method with Test case

generation using Genetic Algorithm:

Discrete Particle Swarm Optimization algorithm is much

simpler than Genetic algorithm as it does not have the

Genetic algorithms “cross” and “mutation” operation.

Generally as in Genetic algorithm there is no selection

operation that means none of the particles are eliminated

and only the value of each particle is changed.

VI. ADVANTAGES AND DISADVANTAGES

In this approach test cases are generated early in the software
development life cycle and are more optimized than
currently present test case generation approaches but as there
is further scope of enhancement in optimizing the test case
so this can be considered as a limitation of the given
approach.

VII. FUTURE SCOPE

In future optimization in generating test cases can be
increased by applying the Hybrid Test Case Generation
algorithm using both Genetic algorithm and Discrete Particle
Swarm Optimization Algorithm as already shown in many
papers from generating test cases from Code that can further
enhanced and the same approach can be applied to Model i.
e. Sequence diagram based test case generation.

VIII. CONCLUSION

In this paper a method for automatic and more dynamic

generation of testing data based on Model i. e. Sequence

Diagram is presented. Here the dependency is not on the

flow but we assigned different discrete values to different

paths based on loops present or not and than our fitness

value will be calculated based on these discrete values and

so if the fitness value will be the maximum value among

these values or will differ as per if the loops are present in

the case considered as in [12].

REFERENCES

[1]. R. Binder, “Testing Object Oriented Systems: Models,

patterns and tools”; Addison-Wesley, 2000.

[2]. S. G. Ponnambalam, N. Jawahar and S. Chandrasekaran,

“Discrete Particle Swarm Optimization Algorithm for

Flowshop Scheduling”.

[3].Emanuela G. Cartaxo, Francisco G. O. Neto and Patrίcia

D. L. Machado; “Test Case Generation by means of UML

Sequence Diagrams and Labeled Transition Systems”,

SMC 2007: 1292-1297.

[4]. S. Shanmuga Priya and P. D. Sheba Kezia Malarchelvi;

“Test Path Generation Using Uml Sequence Diagram”,

IJARCSSE, 2013.

[5]. Bandyopadhyay, A. and Ghosh, S.; “Using UML Sequence

Diagrams and State Machines for Test Input Generation”,

19
th

International Symposium on Software Reliability

Engineering, ISSRE, 2008.

[6]. Vivek Kumar, Aarti Gautam; “Improving Testing

Architecture for MVC Based Application”, IJARCSSE,

February 2014.

[7]. Manpreet Kaur, Rupinder Singh; “Generation of Test

Cases from Sliced Sequence Diagram”, IJCAR, July 2014.

[8]. Ashalatha Nayak and Debasis Samanta; “Synthesis of Test

Scenarios Using UML Sequence Diagrams”, ISRN,

February 2012.

[9]. Santosh Kumar Swain, Durga Prasad Mohapatra, and Rajib

Mall; “Test Case Generation Based on Use case and

Sequence Diagram”, IJSE, July 2010.

[10]. Sven Sieverding, Christian Ellen and Peter Battram;

“Sequence Diagram Test Case Specification and Virtual

Integration Analysis using Timed-Arc Petri Nets”,

FESCA, 2013.

[11]. A. V. K. Shanthi and G. Mohan Kumar; “Automated Test

Cases Generation from UML Sequence Diagram”, ICSCA

2012.

[12]. Azam Andalib and Seyed Morteza, “A New Approach for

Test Case Generation by Discrete Particle Swarm

Optimization Algorithm”; ICEE, 2014.

[13]. Clémentine Nebut, Frank Fleurey, Yves Le Traon, and

Jean-Marc Jézéquel; “Automatic Test Generation: A Use

Case Driven Approach”, IEEE Transactions on Software

Engineering, Vol. 32, No. 3, March 2006.

[14]. Watson, A. H., T. H. McCabe, and D. R. Wallance,

“Structured testing: A testing methodology using the

cyclomatic complexity metric”, NIST special Publicaton,

1996.

