well, this is out capcha image     ISSN 2455-3174 (Online)  
    Current Issue
    Special Issues
    Archive Issue
    Best Paper Award
    Author Guidelines
    Call for Reviewer
    Coverage Areas
    Correction Policy
    Peer Review Process
    Ethics and Malpractice

Directaly Press request for print hard copy of issue via email

    Paper Format
    Copyright Transfer Form
    Digital Certificate
Full Paper View
Hydrogenation Process Analysis in a Slurry Reactor
Mansoor Kazemimoghadam1
1 Malek Ashtar University of Technology, Faculty of Chemical and Chemical Engineering, Tehran, Iran.
Correspondence should be addressed to:
Section:Research Paper, Product Type: Isroset-Journal
Vol.4 , Issue.6 , pp.21-26, Dec-2017


Online published on Dec 31, 2017
Copyright © Mansoor Kazemimoghadam . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at   Google Scholar | DPI Digital Library
  XML View PDF Download  
Citation :
IEEE Style Citation: Mansoor Kazemimoghadam, “Hydrogenation Process Analysis in a Slurry Reactor”, International Journal of Scientific Research in Chemical Sciences, Vol.4, Issue.6, pp.21-26, 2017.

MLA Style Citation: Mansoor Kazemimoghadam "Hydrogenation Process Analysis in a Slurry Reactor." International Journal of Scientific Research in Chemical Sciences 4.6 (2017): 21-26.

APA Style Citation: Mansoor Kazemimoghadam, (2017). Hydrogenation Process Analysis in a Slurry Reactor. International Journal of Scientific Research in Chemical Sciences, 4(6), 21-26.
Abstract :
The liquid-phase catalytic hydrogenation of dimethyl-nitrobenzene (DN) to Dimethyl-aniline (DA) was carried out in ethanol using 5% Pd/C as a catalyst. The effects of hydrogen partial pressure (400–1000 kPa), reaction temperature (343–403 ), catalyst loading (5–15 g/lit), speed of stirring range (200-800 rpm) and dimethyl-nitrobenzene concentration (0.12–0.75 mol/lit) on the hydrogenation of dimethyl-nitrobenzene and the yield of Dimethyl-aniline have been studied. Dimethyl-aniline was the only reaction product, generated through the hydrogenation of the Nitro group of dimethyl-nitrobenzene. The effects of hydrogen partial pressure, catalyst loading, dimethyl-nitrobenzene concentration and temperature on the reaction conversion have been reported. Near first-order dependence on dimethyl-nitrobenzene concentration and hydrogen pressure were observed for the initial rate of dimethyl-nitrobenzene hydrogenation over the 5% Pd/C catalyst. Conventional Arrhenius behavior was exhibited by catalyst, Pd/C showed activation energies of 614 J/mol. A simple power law model was used for analysis of the reaction kinetic data.
Key-Words / Index Term :
Liquid-phase hydrogenation; Pd/C catalysts; dimethyl-nitrobenzene; dimethyl-aniline; operation condition
References :
[1] P. Reyes, H. Rojas, J.L.G. Fierro, Kinetic study of liquid-phase hydrogenation of citral over Ir/TiO2 catalysts, Applied Catalysis A: General 248 (2003) 59–65.
[2] P. Haldar, V.V. Mahajani, Catalytic transfer hydrogenation: o-nitro anisole to o-anisidine, some process development aspects, Chemical Engineering Journal 104 (2004) 27–33.
[3] Dilip R.Patel, R.N. Ram, Hydrogenation of nitrobenzene using polymer anchored Pd (II) complexes, Journal of Molecular Catalysis A: Chemical 130 (1998) 57-64.
[4] Volker Holler, Dagmar Wegricht, Igor Yuranov, Lioubov Kiwi-Minsker, and Albert Renken, Three-Phase Nitrobenzene Hydrogenation over Supported Glass Fiber Catalysts: Reaction Kinetics Study, Chem. Eng. Technol. 23 (2000) 3.
[5] Nivedita S. Chaubal, Manohar R. Sawant, Nitro compounds reduction via hydride transfer using mesoporous mixed oxide catalyst, Journal of Molecular Catalysis A: Chemical 261 (2006) 232–241
[6] Shao-Pai Lee, Yu-Wen Chen, Nitrobenzene hydrogenation on Ni–P, Ni–B and Ni–P–B ultrafine materials, Journal of Molecular Catalysis A: Chemical 152 _2000. 213–223.
[7] Sunil P. Bawane, Sudhirprakash B. Sawant, Hydrogenation of p-nitrophenol to metol using Raney nickel catalyst: Reaction kinetics, Applied Catalysis A: General 293 (2005) 162–170.
[8] Sunil K. Maity, Narayan C. Pradhan, Anand V. Patwardhan, Kinetics of the reduction of nitrotoluenes by aqueous ammonium sulfide under liquid–liquid phase transfer catalysis, Applied Catalysis A: General 301 (2006) 251–258
[9] Prakash D. Vaidya, Vijaykumar V. Mahajani, Kinetics of liquid-phase hydrogenation of n-valeraldehyde to n-amyl alcohol over a Ru/Al2O3 catalyst, Chemical Engineering Science 60 (2005) 1881 – 1887.
[10] T. Swathi, G. Buvaneswari, Application of NiCo2O4 as a catalyst in the conversion of p-nitrophenol to p-aminophenol, Materials Letters 62 (2008) 3900–3902.
[11] Leanne McLaughlin, Ekaterina Novakova, Robbie Burch, Christopher Hardacre, Hydrogenation/hydrogenolysis of disulfides using sulfided Ni/Mo catalysts, Applied Catalysis A: General 340 (2008) 162–168.
[12] Sachin U. Sonavane, Manoj B. Gawande, Sameer S. Deshpande, A. Venkataraman, Radha V. Jayaram, Chemo selective transfer hydrogenation reactions over nanosized c-Fe2O3 catalyst prepared by novel combustion route, Catalysis Communications 8 (2007) 1803–1806
[13] Jia-Huei Shen, Yu-Wen Chen, Catalytic properties of bimetallic NiCoB nano alloy catalysts for hydrogenation of p-chloronitrobenzene, Journal of Molecular Catalysis A: Chemical 273 (2007) 265–276.
[14] Tatiana Tehila Bovkun, Michael Grayevsky, Yoel Sasson, Jochanan Blum, Liquid phase hydrogenation and hydrodenitrogenation of aromatic nitrogen-containing environmental pollutants, Journal of Molecular Catalysis A: Chemical 270 (2007) 171–176
[15] Ekaterina K. Novakova, Leanne McLaughlin, Robbie Burch, Paul Crawford, Ken Griffin, Christopher Hardacre, Peijun Hu, David W. Rooney, Palladium-catalyzed liquid-phase hydrogenation/hydrogenolysis of disulfides, Journal of Catalysis 249 (2007) 93–101.
[16] Yu-Zhi Haoa, Zuo-Xi Li, Jin-Lei Tian, Synthesis, characteristics and catalytic activity of water-soluble [Pd(lysine•HCl)(Cl)2] complex as hydrogenation catalyst, Journal of Molecular catalysis A: Chemical 265 (2007) 258–267.
[17] Christopher M. Vogels, Andreas Decken and Stephen A. Westcott, Catalyzed hydroboration of nitrostyrenes and 4-vinylaniline: a mild and selective route to aniline derivatives containing boronate esters, Tetrahedron Letters 47 (2006) 2419–2422.
[18] Qiong Xua, Xin-Mei Liu, Jun-Ru Chen, Rui-Xiang Li, Xian-Jun Li, Modification mechanism of Sn4+ for hydrogenation of p-chloronitrobenzene over PVP-Pd/Al2O3, Journal of Molecular Catalysis A: Chemical 260 (2006) 299–305
[19] Atsushi Akao, Kimihiko Sato, Nobuaki Nonoyama, Toshiaki Masea and Nobuyoshi Yasud, Highly chemo selective reduction using an Rh/C–Fe (OAc) 2 system: practical synthesis of functionalized indoles, Tetrahedron Letters 47 (2006) 969–972.
User Section

If you do not have an account Click here for registration.
Email Id :   *
Password :   *
New User?   Forgot Password
Authorization Required

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at or view contact page for more details.

Impact Factor
Year :  
Member of DOI/CrossRef
Thomson Reuters RID
Conference Publication

We feel pleased to publish such types of international, National conference, workshop, seminar, symposium souvenir, proceeding with ISROSET Submit Here

Open Access
     Home l Cancellation Policy l Refund Policy l Terms & Conditions l Privacy Policy l Our Services l Sitemap This work is licensed under an Attribution-NC-ND 4.0 International (CC BY-NC-ND 4.0)
ISROSET is the world's largest leading and growing professional organization dedicated to pioneering scientific research for the benefit of humanity without financial restriction.
© Copyright-2016 IJSRCS: All rights reserved. Use of this website signifies your agreement to the terms and conditions. Reg. No: 24143/IND/CE/2012